मराठी

The displacement time graph of a particle executing S.H.M. is shown in figure. Which of the following statement is/are true? - Physics

Advertisements
Advertisements

प्रश्न

The displacement time graph of a particle executing S.H.M. is shown in figure. Which of the following statement is/are true?

  1. The force is zero at `t = (T)/4`.
  2. The acceleration is maximum at `t = (4T)/4`.
  3. The velocity is maximum at `t = T/4`.
  4. The P.E. is equal to K.E. of oscillation at `t = T/2`.
टीपा लिहा

उत्तर

a, b and c

Explanation:

Consider the diagram


From the given diagram; it is clear that

  1. At `t = (3T)/4`, the displacement of the particle is zero. Hence. the particle executing SHM will be at the mean position ie., x = 0. So, acceleration is zero and force is also zero.
  2. At t = `(4T)/4`, displacement is maximum i.e., extreme position, so acceleration is maximum.
  3. At t = `T/4`, corresponds to the mean position. so velocity will be maximum at this position.
  4. At t = `(2T)/4 = T/2`, corresponds to extreme position, so KE = 0 and PE = maximum.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Oscillations - Exercises [पृष्ठ १०१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 11
पाठ 14 Oscillations
Exercises | Q 14.16 | पृष्ठ १०१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The periodic time of a linear harmonic oscillator is 2π second, with maximum displacement of 1 cm. If the particle starts from extreme position, find the displacement of the particle after π/3  seconds.


Figure depicts four x-t plots for linear motion of a particle. Which of the plots represent periodic motion? What is the period of motion (in case of periodic motion)?


The piston in the cylinder head of a locomotive has a stroke (twice the amplitude) of 1.0 m. If the piston moves with simple harmonic motion with an angular frequency of 200 rad/min, what is its maximum speed?


A person goes to bed at sharp 10.00 pm every day. Is it an example of periodic motion? If yes, what is the time period? If no, why?


Two bodies A and B of equal mass are suspended from two separate massless springs of spring constant k1 and k2 respectively. If the bodies oscillate vertically such that their maximum velocities are equal, the ratio of the amplitude of A to that of B is


The left block in figure moves at a speed v towards the right block placed in equilibrium. All collisions to take place are elastic and the surfaces are frictionless. Show that the motions of the two blocks are periodic. Find the time period of these periodic motions. Neglect the widths of the blocks.


The period of oscillation of a body of mass m1 suspended from a light spring is T. When a body of mass m2 is tied to the first body and the system is made to oscillate, the period is 2T. Compare the masses m1 and m2


A 20 cm wide thin circular disc of mass 200 g is suspended to rigid support from a thin metallic string. By holding the rim of the disc, the string is twisted through 60° and released. It now performs angular oscillations of period 1 second. Calculate the maximum restoring torque generated in the string under undamped conditions. (π3 ≈ 31)


When two displacements represented by y1 = a sin(ωt) and y2 = b cos(ωt) are superimposed the motion is ______. 


A person normally weighing 50 kg stands on a massless platform which oscillates up and down harmonically at a frequency of 2.0 s–1 and an amplitude 5.0 cm. A weighing machine on the platform gives the persons weight against time.

  1. Will there be any change in weight of the body, during the oscillation?
  2. If answer to part (a) is yes, what will be the maximum and minimum reading in the machine and at which position?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×