Advertisements
Advertisements
प्रश्न
The equation of a line is x – y = 4. Find its slope and y-intercept. Also, find its inclination.
उत्तर
Given equation of a line is x − y = 4
`=>` y = x − 4
Comparing this equation with y = mx + c, we have:
Slope = m = 1
y-intercept = c = −4
Let the inclination be θ.
Slope = 1 = tan θ = tan 45°
∴ θ = 45°
APPEARS IN
संबंधित प्रश्न
Write the equation of each of the following lines:
- The x-axis and the y-axis.
- The line passing through the origin and the point (-3, 5).
- The line passing through the point (-3, 4) and parallel to X-axis.
In ΔABC, A(3, 5), B(7, 8) and C(1, –10). Find the equation of the median through A.
- Write down the equation of the line AB, through (3, 2) and perpendicular to the line 2y = 3x + 5.
- AB meets the x-axis at A and the y-axis at B. Write down the co-ordinates of A and B. Calculate the area of triangle OAB, where O is the origin.
The line 4x − 3y + 12 = 0 meets x-axis at A. Write the co-ordinates of A. Determine the equation of the line through A and perpendicular to 4x – 3y + 12 = 0.
A (5, 4), B (–3,–2) and C (1,–8) are the vertices of a triangle ABC. Find the equation of median AD and line parallel to AB passing through point C.
Show that points P(2, –2), Q(7, 3), R(11, –1) and S (6, –6) are vertices of a parallelogram.
In the figure, line PQ || line RS. Using the information given
in the figure find the value of x.
Line PQ is parallel to line RS where points P,Q,R and S have
co-ordinates (2, 4), (3, 6), (3, 1) and (5, k) respectively. Find value of k.
In the given figure, line AB meets y-axis at point A. Line through C(2, 10) and D intersects line AB at right angle at point P. Find:
- equation of line AB.
- equation of line CD.
- co-ordinates of points E and D.
A line is parallel to Y-axis and is at a distance of 5 units from the Y-axis. Write the equation of that line.