मराठी

The median of the following data is 50. Find the values of p and q, if the sum of all the frequencies is 90. - Mathematics

Advertisements
Advertisements

प्रश्न

The median of the following data is 50. Find the values of p and q, if the sum of all the frequencies is 90.

Marks: 20 -30 30-40 40-50 50-60 60-70 70-80 80-90
Frequency: P 15 25 20 q 8 10

The median of the following data is 50. Find the values of ‘p’ and ‘q’, if the sum of all frequencies is 90. Also find the mode of the data.

Marks obtained Number of students
20 – 30 p
30 – 40 15
40 – 50 25
50 – 60 20
60 – 70 q
70 – 80 8
80 – 90 10
तक्ता
बेरीज

उत्तर

The given series is in inclusive form. Converting it to exclusive form and preparing the cumulative frequency table, we have

Class interval Frequency (fi ) Cumulative Frequency (c.f.)
20 – 30 p p
30 – 40 15 p + 15
40 – 50 25 p + 40
50 – 60 20 p + 60
60 – 70 q p + q + 60
70 – 80 8 p + q + 68
80 – 90 10 p + q + 78
  78 + p + q = 90  

Median = 50It lies in the interval 50 – 60, so the median class is 50 – 60.

Now, we have

l = 50, h = 10, f = 20, F = p + 40, N = 90

We know that

Median = `"l" + {("N"/2 - "f")/"f"} xx "h"`

`50 = 50 + (45 - ("p" + 40))/20xx10`

⇒ 0 = `(5 - "p")/2`

⇒ p = 5

And,

p + q + 78 = 90

⇒ p + q = 12

⇒ q = 12 - 5 = 7

Model = `"l" + ("f"_1 - "f"_0)/(2"f"_1 - "f"_0 - "f"_2)."h"`

= `40 + (25 - 15)/(2(25) - 15 - 20)xx10`

= `40 + 100/15`

= 40 + 6.67

= 46.67

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Statistics - Exercise 15.4 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 15 Statistics
Exercise 15.4 | Q 21 | पृष्ठ ३६

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

The mean of following numbers is 68. Find the value of ‘x’. 45, 52, 60, x, 69, 70, 26, 81 and 94. Hence, estimate the median.


The table below shows the salaries of 280 persons :

Salary (In thousand Rs) No. of Persons
5 – 10 49
10 – 15 133
15 – 20 63
20 – 25 15
25 – 30 6
30 – 35 7
35 – 40 4
40 – 45 2
45 – 50 1

Calculate the median salary of the data.


The marks obtained by 19 students of a class are given below:

27, 36, 22, 31, 25, 26, 33, 24, 37, 32, 29, 28, 36, 35, 27, 26, 32, 35 and 28.

Find:

  1. Median
  2. Lower quartile
  3. Upper quartile
  4. Inter-quartile range

The ages of 37 students in a class are given in the following table: 

Age (in years) 11 12 13 14 15 16
Frequency  2 4 6 10 8 7

Given below is the number of units of electricity consumed in a week in a certain locality:

Class 65 – 85 85 – 105 105 – 125 125 – 145 145 – 165 165 – 185 185 – 200
Frequency 4 5 13 20 14 7 4

Calculate the median.


Calculate the median from the following data:

Height(in cm) 135 - 140 140 - 145 145 - 150 150 - 155 155 - 160 160 - 165 165 - 170 170 - 175
Frequency 6 10 18 22 20 15 6 3

 


Below is the given frequency distribution of words in an essay:

Number of words   Number of Candidates
600  -  800             12
800  -  1000             14
1000 - 1200              40
1200 - 1400              15
1400 - 1600              19

Find the mean number of words written.


Calculate the median of the following distribution:

No. of goals 0 1 2 3 4 5
No. of matches 2 4 7 6 8 3

The median of an ungrouped data and the median calculated when the same data is grouped are always the same. Do you think that this is a correct statement? Give reason.


Will the median class and modal class of grouped data always be different? Justify your answer.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×