मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

The Phase Difference Between Displacement and Acceleration of a Particle Performing S.H.M. is - Physics

Advertisements
Advertisements

प्रश्न

The phase difference between displacement and acceleration of a particle performing S.H.M. is _______.

(A) `pi/2rad`

(B) π rad

(C) 2π rad

(D)`(3pi)/2rad`

उत्तर

π rad

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The period of a conical pendulum in terms of its length (l), semi-vertical angle (θ) and acceleration due to gravity (g) is:


If the metal bob of a simple pendulum is replaced by a wooden bob of the same size, then its time period will.....................

  1. increase
  2. remain same
  3. decrease
  4. first increase and then decrease.

When the length of a simple pendulum is decreased by 20 cm, the period changes by 10%. Find the original length of the pendulum.


A spring having with a spring constant 1200 N m–1 is mounted on a horizontal table as shown in Fig. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released.

Determine (i) the frequency of oscillations, (ii) maximum acceleration of the mass, and (iii) the maximum speed of the mass.


let us take the position of mass when the spring is unstretched as x = 0, and the direction from left to right as the positive direction of the x-axis. Give as a function of time t for the oscillating mass if at the moment we start the stopwatch (= 0), the mass is

(a) at the mean position,

(b) at the maximum stretched position, and

(c) at the maximum compressed position.

In what way do these functions for SHM differ from each other, in frequency, in amplitude or the initial phase?


Answer the following questions:

A time period of a particle in SHM depends on the force constant and mass of the particle: `T = 2pi sqrt(m/k)` A simple pendulum executes SHM approximately. Why then is the time 

 


Answer the following questions:

The motion of a simple pendulum is approximately simple harmonic for small angle oscillations. For larger angles of oscillation, a more involved analysis shows that is greater than `2pisqrt(1/g)`  Think of a qualitative argument to appreciate this result.


Answer the following questions:

A man with a wristwatch on his hand falls from the top of a tower. Does the watch give correct time during the free fall?


Answer the following questions:

What is the frequency of oscillation of a simple pendulum mounted in a cabin that is freely falling under gravity?


A simple pendulum of length and having a bob of mass is suspended in a car. The car is moving on a circular track of radius with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium position, what will be its time period?


A clock regulated by seconds pendulum, keeps correct time. During summer, length of pendulum increases to 1.005 m. How much will the clock gain or loose in one day?

(g = 9.8 m/s2 and π = 3.142)


Show that, under certain conditions, simple pendulum performs the linear simple harmonic motion.


If the particle starts its motion from mean position, the phase difference between displacement and acceleration is ______.


A simple pendulum has a time period of T1 when on the earth's surface and T2 when taken to a height R above the earth's surface, where R is the radius of the earth. The value of `"T"_2 // "T"_1` is ______. 


The period of oscillation of a simple pendulum of constant length at the surface of the earth is T. Its time period inside mine will be ______.


Which of the following statements is/are true for a simple harmonic oscillator?

  1. Force acting is directly proportional to displacement from the mean position and opposite to it.
  2. Motion is periodic.
  3. Acceleration of the oscillator is constant.
  4. The velocity is periodic.

Two identical springs of spring constant K are attached to a block of mass m and to fixed supports as shown in figure. When the mass is displaced from equilibrium position by a distance x towards right, find the restoring force


The length of a second’s pendulum on the surface of earth is 1 m. What will be the length of a second’s pendulum on the moon?


A cylindrical log of wood of height h and area of cross-section A floats in water. It is pressed and then released. Show that the log would execute S.H.M. with a time period. `T = 2πsqrt(m/(Apg))` where m is mass of the body and ρ is density of the liquid.


A simple pendulum of time period 1s and length l is hung from a fixed support at O, such that the bob is at a distance H vertically above A on the ground (Figure). The amplitude is θ0. The string snaps at θ = θ0/2. Find the time taken by the bob to hit the ground. Also find distance from A where bob hits the ground. Assume θo to be small so that sin θo = θo and cos θo = 1.


In the given figure, a mass M is attached to a horizontal spring which is fixed on one side to a rigid support. The spring constant of the spring is k. The mass oscillates on a frictionless surface with time period T and amplitude A. When the mass is in equilibrium position, as shown in the figure, another mass m is gently fixed upon it. The new amplitude of oscillation will be:


A pendulum of mass m and length ℓ is suspended from the ceiling of a trolley which has a constant acceleration a in the horizontal direction as shown in the figure. Work done by the tension is ______.

(In the frame of the trolley)

 


A particle at the end of a spring executes simple harmonic motion with a period t1, while the corresponding period for another spring is t2. If the period of oscillation with the two springs in series is T, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×