मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

When We Rub Our Hands They Become Warm. Have We Supplied Heat to the Hands? - Physics

Advertisements
Advertisements

प्रश्न

When we rub our hands they become warm. Have we supplied heat to the hands?

एका वाक्यात उत्तर

उत्तर

When we rub our hands, they become warm. In this process, heat is supplied to the hands due to the friction between the hands.

shaalaa.com
Heat, Internal Energy and Work
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Laws of Thermodynamics - Short Answers [पृष्ठ ६०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 4 Laws of Thermodynamics
Short Answers | Q 6 | पृष्ठ ६०

संबंधित प्रश्‍न

In changing the state of a gas adiabatically from an equilibrium state to another equilibrium state B, an amount of work equal to 22.3 J is done on the system. If the gas is taken from state to via a process in which the net heat absorbed by the system is 9.35 cal, how much is the net work done by the system in the latter case? (Take 1 cal = 4.19 J)


A steam engine delivers 5.4×10J of work per minute and services 3.6 × 10J of heat per minute from its boiler. What is the efficiency of the engine? How much heat is wasted per minute?


A force F is applied on a block of mass M. The block is displaced through a distance d in the direction of the force. What is the work done by the force on the block? Does the internal energy change because of this work?


The final volume of a system is equal to the initial volume in a certain process. Is the work done by the system necessarily zero? Is it necessarily nonzero?


Can work be done by a system without changing its volume?


Refer to figure. Let ∆U1 and ∆U2 be the changes in internal energy of the system in the process A and B. Then _____________ .


Consider the following two statements.

(A) If heat is added to a system, its temperature must increase.

(B) If positive work is done by a system in a thermodynamic process, its volume must increase.


In a process on a system, the initial pressure and volume are equal to the final pressure and volume.

(a) The initial temperature must be equal to the final temperature.

(b) The initial internal energy must be equal to the final internal energy.

(c) The net heat given to the system in the process must be zero.

(d) The net work done by the system in the process must be zero.


Figure shows three paths through which a gas can be taken from the state A to the state B. Calculate the work done by the gas in each of the three paths.


A system releases 130 kJ of heat while 109 kJ of work is done on the system. Calculate the change in internal energy.


Define heat.


What is the internal energy of the system, when the amount of heat Q is added to the system and the system does not do any work during the process?


The internal energy of a system is ______


In a thermodynamic system, working substance is ideal gas. Its internal energy is in the form of ______.


When 1 g of water at 0° C and 1 x 105 N/m2 pressure is converted into ice of volume 1.082 cm3, the external work done will be ____________.


Two samples A and B, of a gas at the same initial temperature and pressure are compressed from volume V to V/2; A isothermally and B adiabatically. The final pressure of A will be ______.


In thermodynamics, heat and work are ______.


A gas is compressed at a constant pressure of 50 N/m2 from a volume of 10 m3 to a volume of 4 m3. Energy of 100 J is then added to the gas by heating. Its internal energy is ______.


If a gas is compressed adiabatically:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×