Advertisements
Advertisements
प्रश्न
Write orbital notations for the electron in orbitals with the following quantum numbers.
n = 4, l = 2
उत्तर
4d
APPEARS IN
संबंधित प्रश्न
Choose the correct option.
Principal Quantum number describes -
State Heisenberg uncertainty principle.
State and explain Pauli’s exclusion principle.
Write orbital notations for the electron in orbitals with the following quantum numbers.
n = 3, l = 2
Write condensed orbital notation of electronic configuration of the following element:
Silicon (Z = 14)
Write condensed orbital notation of electronic configuration of the following element:
Chlorine (Z = 17)
Write condensed orbital notation of electronic configuration of the following element:
Calcium (Z = 20)
Draw shapes of 2s orbitals.
Which mineral among the following contains vanadium in it?
Which of the following options does not represent ground state electronic configuration of an atom?
Which of the following properties of atom could be explained correctly by Thomson Model of atom?
Total number of orbitals associated with third shell will be ______.
Orbital angular momentum depends on ______.
Out of the following pairs of electrons, identify the pairs of electrons present in degenerate orbitals:
(i) | (a) `n = 3, l = 2, m_l = -2, m_s = - 1/2` |
(b) `n = 3, l = 2, m_l = -1, m_s = - 1/2` | |
(ii) | (a) `n = 3, l = 1, m_l = 1, m_s = + 1/2` |
(b) `n = 3, l = 2, m_l = 1, m_s = + 1/2` | |
(iii) | (a) `n = 4, l = 1, m_l = 1, m_s = + 1/2` |
(b) `n = 3, l = 2, m_l = 1, m_s = + 1/2` | |
(iv) | (a) `n = 3, l = 2, m_l = +2, m_s = - 1/2` |
(b) `n = 3, l = 2, m_l = +2, m_s = + 1/2` |
Which of the following sets of quantum numbers are correct?
`n` | `l` | `m_l` | |
(i) | 1 | 1 | +2 |
(ii) | 2 | 1 | +1 |
(iii) | 3 | 2 | –2 |
(iv) | 3 | 4 | –2 |
Nickel atom can lose two electrons to form \[\ce{Ni^{2+}}\] ion. The atomic number of nickel is 28. From which orbital will nickel lose two electrons.
Which of the following orbitals are degenerate?
3dxy, 4dxy 3dz2, 3dyz, 4dyz, 4dz2
The arrangement of orbitals on the basis of energy is based upon their (n + l) value. Lower the value of (n + l), lower is the energy. For orbitals having same values of (n + l), the orbital with lower value of n will have lower energy.
Based upon the above information, arrange the following orbitals in the increasing order of energy.
1s, 2s, 3s, 2p
The arrangement of orbitals on the basis of energy is based upon their (n + l) value. Lower the value of (n + l), lower is the energy. For orbitals having same values of (n + l), the orbital with lower value of n will have lower energy.
Based upon the above information, arrange the following orbitals in the increasing order of energy.
5p, 4d, 5d, 4f, 6s
The arrangement of orbitals on the basis of energy is based upon their (n + l) value. Lower the value of (n + l), lower is the energy. For orbitals having same values of (n + l), the orbital with lower value of n will have lower energy.
Based upon the above information, arrange the following orbitals in the increasing order of energy.
5f, 6d, 7s, 7p
The arrangement of orbitals on the basis of energy is based upon their (n + l) value. Lower the value of (n + l), lower is the energy. For orbitals having same values of (n + l), the orbital with lower value of n will have lower energy.
Based upon the above information, solve the questions given below:
Which of the following orbitals has the lowest energy?
4d, 4f, 5s, 5p
Match the quantum numbers with the information provided by these.
Quantum number | Information provided |
(i) Principal quantum number | (a) orientation of the orbital |
(ii) Azimuthal quantum number | (b) energy and size of orbital |
(iii) Magnetic quantum number | (c) spin of electron |
(iv) Spin quantum number | (d) shape of the orbital |
Match the following
(i) Photon | (a) Value is 4 for N shell |
(ii) Electron | (b) Probability density |
(iii) ψ2 | (c) Always positive value |
(iv) Principal quantum number n | (d) Exhibits both momentum and wavelength |
Match species given in Column I with the electronic configuration given in Column II.
Column I | Column II |
(i) \[\ce{Cr}\] | (a) [Ar]3d84s0 |
(ii) \[\ce{Fe^{2+}}\] | (b) [Ar]3d104s1 |
(iii) \[\ce{Ni^{2+}}\] | (c) [Ar]3d64s0 |
(iv) \[\ce{Cu}\] | (d) [Ar] 3d54s1 |
(e) [Ar]3d64s2 |
In assigning R - S configuration, which among the following groups has highest priority?
Which one of the following laws will represent the pairing of electrons in a subshell after each orbital is filled with one electron?