Advertisements
Advertisements
प्रश्न
यदि A = `[(2, 3),(-1, 2)]`, तो दिखाइए कि A2 – 4A + 7I = O इस परिणाम का उपयोग करके A5 का मान भी निकालिए।
उत्तर
यहाँ A2 = `[(2, 3),(-1, 2)] [(2, 3),(-1, 2)] = [(1, 12),(-4, 1)]`
– 4A = `[(-8, -12),(4, -8)]` तथा 7I = `[(7, 0),(0, 7)]`
इसलिए, A2 – 4A + 7I = `[(1 - 8 + 7, 12 - 12 + 0),(-4 + 4 + 0, 1 - 8 + 7)]`
= `[(0, 0),(0, 0)]`
= O
⇒ A2 – 4A + 7I
अब A3 = A.A2 = A(4A – 7I)
= 4(4A – 7I) – 7A
= 16A – 28I – 7A = 9A – 28I
पुन: A5 = A3A2
= (9A – 28I) (4A – 7I)
= 36A2 – 63A – 112A + 196I
= 36(4A – 7I) – 175A + 196I
= – 31A – 56I
= `-3"I"[(2, 3),(-1, 2)] -56[(1, 0),(0, 1)]`
= `[(-118, -93),(31, -118)]`
APPEARS IN
संबंधित प्रश्न
यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।
आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।
यदि A और B एक समान कोटि की दो विषम सममित आव्यूह हों तो AB एक सममित आव्यूह होगा यदि ______
यदि A और B समान कोटि के आव्यूह हैं तब (3A -2B)′ = ______
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
आव्यूह समीकरण `x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]` को संतुष्ट करने वाले x के शून्येतर मान निकालिए।
यदि A = `[(0, 1),(1, 1)]` और B = `[(0, -1),(1, 0)]` हैं तो दिखाइए कि (A + B) (A - B) A2 - B2.
x तथा y के लिए हल कीजिए।
`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: A(B + C) = AB + AC.
यदि A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]` है तो सत्यापित कीजिए कि A2 + A = A(A + I), जहाँ I एक 3 × 3 तत्समक आव्यूह है।
यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि (2A + B)′ = 2A′ + B′
दिखाइए कि यदि A और B वर्ग आव्यूह हैं तथा AB = BA है, तब (A + B)2 = A2 + 2AB + B2
A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I
यदि A तथा B समान कोटि के वर्ग आव्यूह हैं और B एक विषम सममित आव्यूह है तो दिखाइए कि A′BA एक विषम सममित आव्यूह है।
आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।
कोटि 3 × 3 के सभी संभव आव्यूहों की संख्या जिनकी प्रत्येक प्रविष्ठि 2 या 0 हो, होगी।
यदि A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]` हो तो A – B बराबर है।
यदि A = `[(0, 1), (1, 0)]`, तो A2 बराबर है।
आव्यूह `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]`
किसी आव्यूह का ऋण आव्यूह इसको ______ से गुणा करके प्राप्त किया जाता है।
एक आव्यूह जो आवश्यक नहीं कि वर्ग आव्यूह हो एक ______ आव्यूह कहलाता है।
आव्यूहों का गुणनफल, योग का ______ करता है।
यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो [k (A – B)]′ = ______
यदि A और B सममित आव्यूह हैं तो AB – BA ______ है।
यदि A और B सममित आव्यूह हैं तो BA – 2AB ______ है।
आव्यूहों का योग, साहचर्य तथा क्रम विनिमेय दोनों ही नियमों का पालन करता है।
यदि A और B दो समान कोटि के आव्यूह हैं तो A - B = B - A होता है।
यदि A = `[(2, 3, -1),(1, 4, 2)]` और B = `[(2, 3),(4, 5),(2, 1)]`, तब AB और BA, दोनों परिभाषित हैं तथा समान हैं।