Advertisements
Advertisements
प्रश्न
यदि किसी AP के तीसरे और 8 वें पदों का योग 7 है तथा 7 वें और 14 वें पदों का योग –3 है, तो उसका 10 वाँ पद ज्ञात कीजिए।
उत्तर
मान लीजिए किसी AP का पहला पद और सार्व अंतर क्रमशः a और d हैं।
प्रश्न के अनुसार,
a3 + a8 = 7 और a7 + a14 = –3
⇒ a + (3 – 1)d + a + (8 – 1)d = 7 ...[∵ an = a + (n – 1)d]
और a + (7 – 1)d + a + (14 – 1)d = –3
⇒ a + 2d + a + 7d = 7
और a + 6d + a + 13d = –3
⇒ 2a + 9d = 7 ...(i)
और 2a + 19d = –3 ...(ii)
समीकरण (i) को समीकरण (ii) से घटाने पर, हमें प्राप्त होता है।
10d = –10
⇒ d = –1
2a + 9(–1) = 7 ...[समीकरण (i) से]
⇒ 2a – 9 = 7
⇒ 2a = 16
⇒ a = 8
∴ a10 = a + (10 – 1)d
= 8 + 9(–1)
= 8 – 9
= –1
APPEARS IN
संबंधित प्रश्न
दी हुई A.P. के प्रथम चार पद लिखिए, जबकि प्रथम पद a और सार्व अंतर d निम्नलिखित हैं:
a = 10, d = 10
निम्नलिखित सारणी में, रिक्त स्थान को भरिए, जहाँ AP का प्रथम पद a, सार्व अंतर d और nवाँ पद an है:
a | d | n | an |
7 | 3 | 8 | ______ |
निम्नलिखित सारणी में, रिक्त स्थान को भरिए, जहाँ AP का प्रथम पद a, सार्व अंतर d और nवाँ पद an है:
a | d | n | an |
-18.9 | 2.5 | ______ | 3.6 |
निम्नलिखित समांतर श्रेढ़ी में कितने पद हैं?
7, 13, 19, ..., 205
रामकली ने किसी वर्ष के प्रथम सप्ताह में ₹ 50 की बचत की और फिर अपनी साप्ताहिक बचत ₹ 17.5 बढ़ाती गई। यदि nवें सप्ताह में उसकी साप्ताहिक बचत ₹ 207.50 हो जाती है, तो n ज्ञात कीजिए।
एक पंक्ति के मकानों को क्रमागत रूप से संख्या 1 से 49 तक अंकित किया गया है। दर्शाइए कि x का एक ऐसा मान है कि x से अंकित मकान से पहले के मकानों की संख्याओं का योग उसके बाद वाले मकानों की संख्याओं के योग के बराबर है। x का मान ज्ञात कीजिए।
[संकेत: Sx - 1 = S49 - Sx है।]
किसी AP में, यदि d = – 4, n = 7 और an = 4 है, तो a का मान ______ है।
उस AP का सार्व अंतर क्या है, जिसमें a18 – a14 32 है?
AP: −3, –7, −11, ... के लिए क्या हम a30 और a20 को वास्तव में बिना ज्ञात किए सीधे a30 – a20 ज्ञात कर सकते हैं? अपने उत्तर के लिए कारण दीजिए।
उस AP का 20 वाँ पद ज्ञात कीजिए जिसका 7 वाँ पद 11 वें पद से 24 कम है और प्रथम पद 12 है।