Advertisements
Advertisements
Question
'a' के ऐसे दो मान हैं जिनके लिए ∆ = `|(1, -2, 5),(2, "a", -1),(0, 4, 2"a")|` = 86, है तो इन दो संख्याओं का योग है।
Options
4
5
– 4
9
Solution
सही उत्तर – 4 है।
व्याख्या:
हमारे पास है, ∆ = `|(1, -2, 5),(2, "a", -1),(0, 4, 2"a")|` = 86
⇒ 1(2a2 + 4) –2(–4a – 2) + 0 = 86 .....[C1 के अनुदिश विस्तार करना]
⇒ a2 + 4a – 21 = 0
⇒ (a + 7)(a – 3) = 0
⇒ a = –7 और 3
∴ अभीष्ट sum = –7 + 3 = –4
APPEARS IN
RELATED QUESTIONS
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((0,1,2),(-1,0,-3),(-2,3,0))`
सारणिक का प्रसरण किए बिना सिद्ध कीजिए कि `[(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)] = [(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)]`
`[(x,y,x+y),(y,x+y,x),(x+y,x,y)]` का मान ज्ञात कीजिए।
`[(1,x,y),(1,x+y,y),(1,x,x+y)]` का मान ज्ञात कीजिए।
दिखाइए कि यदि सारणिक ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0 है तब sinθ = 0 या `1/2` होगा।
यदि ∆ = `|("A"x, x^2, 1),("B"y, y^2, 1),("C"z, z^2, 1)|`तथा ∆1 = `|("A", "B", "C"),(x, y, z),(zy, zx, xy)|`, तब
सारणिक ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` ______
सारणिक ∆ = `|(sin^2 23^circ, sin^2 67^circ, cos180^circ),(-sin^2 67^circ, -sin^2 23^circ, cos^2 180^circ),(cos180^circ, sin^2 23^circ, sin^2 67^circ)|` = ______
यदि A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` तब x = 1, y = – 1
मान निकालिए- `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`
सिद्ध कीजिए - `|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)| = ("a" - 1)^3`
यदि A + B + C = 0, तो सिद्ध कीजिए कि `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0
यदि एक समबाहु त्रिभुज के शीर्ष (x1, y1), (x2, y2), (x3, y3) तथा त्रिभुज की भुजाओं की लंबाई ‘a’ है तो सिद्ध कीजिए कि `|(x_1, y_1, 1),(x_2, y_2, 1),(x_3, y_3, 1)|^2 = (3"a"^4)/4`
दर्शाइए कि a के किसी भी मान के लिए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) एक सरल रेखा में नहीं है।
यदि A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, तो A–1 ज्ञात कीजिए। A–1 का प्रयोग करके रैखिक समीकरणों के निकाय x – 2y = 10 , 2x – y – z = 8, –2y + z = 7 को हल कीजिए।
यदि A = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, B = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, तो 8 ज्ञात कीजिए और इसका प्रयोग समीकरण निकाय y + 2z = 7, x – y = 3, 2x + 3y + 4z = 17 को हल करने के लिए कौजिए।
एक त्रिभुज का क्षेत्रफल 9 वर्ग इकाई है जिसके शीर्ष (-3, 0), (3, 0) और (0, k) हैं तो k का मान होगा।
यदि f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, तब
यदि A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]` तब A–1 का अस्तित्व है यदि
यदि A और B व्युत्क्रमणीय आव्यूह हैं तब निम्न में से कौन सा सत्य नहीं है?
यदि x, y, z में कोई भी शून्य नहीं है और `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, है तब x–1 + y–1 + z–1 बराबर है।
यदि x, y, z ∈ R, तब सारणिक `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` बराबर है ______ ।
यदि A एक 3 × 3 कोटि का आव्यूह है तब A के सारणिक के सभी उप-सारणिकों की संख्या ______ है।
यदि A और B कोटि 3 के आव्यूह हैं और |A| = 5, |B| = 3, तब |3AB| = 27 × 5 × 3 = 405.
सारणिक `|(sin"A", cos"A", sin"A" + cos"B"),(sin"B", cos"A", sin"B" + cos"B"),(sin"C", cos"A", sin"C" + cos"B")|` = 0
यदि सारणिक `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` को कोटि 3 के K सारणिकों में ऐसे विघटित किया जाए कि उनके प्रत्येक अवयव में केवल एक पद हो तब K का मान 8 है।
यदि Δ = `|("a", "p", x),("b", "q", y),("c", "r", z)|` = 16, है तब Δ1 = `|("p" + x, "a" + x, "a" + "p"),("q" + y, "b" + y, "b" + "q"),("r" + z, "c" + z, "c" + "r")|` = 32 होगा।