Advertisements
Advertisements
Question
A regular polygon of n sides is formed by bending a wire of total length 2πr which carries a current i. (a) Find the magnetic filed B at the centre of the polygon. (b) By letting n → ∞, deduce the expression for the magnetic field at the centre of a circular current.
Solution
(a)
Using figure,
\[\text{ For a regure polygon of n - sides, the angle subtended at the centre is } \frac{2\pi}{n}\]
\[\tan\theta = \frac{l}{2x}\]
\[ \Rightarrow x = \frac{l}{2\tan\theta}\]
\[\text{ considering angle to be small} \]
\[\frac{l}{2} = \frac{\pi r}{n}\]
\[\text{ Using Biot - Savart law for one side }\]
\[B = \frac{\mu_0}{4\pi}\frac{\text{idl }\sin\theta}{x^2}\]
\[ \Rightarrow B = \frac{\mu_0}{4\pi}\frac{i(\sin\theta + \sin\theta)}{x^2} = \frac{\mu_0 i2\left( \tan\theta \right)\left( 2\sin\theta \right)}{4\pi l} \left( \text{ Putting value of r }\right)\]
\[ \Rightarrow B = \frac{\mu_0 i2n\left( \tan\left( \frac{\pi}{n} \right) \right)\left( 2\sin\left( \frac{\pi}{n} \right) \right)}{4\pi\left( 2\pi r \right)} \left( \text{ Putting value of l } \right)\]
\[\text{ For n - sided polygon} \]
\[B' = nB\]
\[ \Rightarrow B' = \frac{\mu_0 i n^2 \tan\left( \frac{\pi}{n} \right)\sin\left( \frac{\pi}{n} \right)}{2 \pi^2 r}\]
(b)
when n→ ∞, polygon becomes a circle with radius r
and magnetic field will become \[B = \frac{\mu_0 i}{2r}\]
APPEARS IN
RELATED QUESTIONS
State Biot – Savart law.
Using Biot − Savart’s law, derive the expression for the magnetic field in the vector form at a point on the axis of a circular current loop?
A proton goes undeflected in a crossed electric and magnetic field (the fields are perpendicular to each other) at a speed of 2.0 × 105 m s−1. The velocity is perpendicular to both the fields. When the electric field is switched off, the proton moves along a circle of radius 4.0 cm. Find the magnitudes of the electric and magnetic fields. Take the mass of the proton = 1.6 × 10−27 kg
A wire of length l is bent in the form of an equilateral triangle and carries an electric current i. (a) Find the magnetic field B at the centre. (b) If the wire is bent in the form of a square, what would be the value of B at the centre?
An electric current I flows through an infinitely long conductor as shown in Figure 2 (a) below. Write an expression and direction for the magnetic field at point P.
A long wire with a small current element of length 1 cm is placed at the origin and carries a current of 10 A along the X-axis. Find out the magnitude and direction of the magnetic field due to the element on the Y-axis at a distance 0.5 m from it.
A straight wire carrying a current of 5 A is bent into a semicircular arc of radius 2 cm as shown in the figure. Find the magnitude and direction of the magnetic field at the centre of the arc.
State and explain the law used to determine the magnetic field at a point due to a current element. Derive the expression for the magnetic field due to a circular current-carrying loop of radius r at its center.
Derive the expression for the magnetic field due to a current-carrying coil of radius r at a distance x from the center along the X-axis.
A straight wire carrying a current of 5 A is bent into a semicircular arc radius 2 cm as shown in the figure. Find the magnitude and direction of the magnetic field at the center of the arc
Two concentric circular loops of radius 1 cm and 20 cm are placed coaxially.
(i) Find mutual inductance of the arrangement.
(ii) If the current passed through the outer loop is changed at a rate of 5 A/ms, find the emf induced in the inner loop. Assume the magnetic field on the inner loop to be uniform.
A circular loop of radius 0.3 cm lies parallel to much bigger circular of radius 20 cm. The centre of the small loop is on the axis of the bigger loop. The distance between their centres is 15 cm. If a current of 2.0 A flows through the smaller loop, then the flux linked with the bigger loop is ______.
Biot-Sawart law indicates that the moving electrons (velocity `overset(->)("v")`) produce a magnetic field B such that
The magnetic field at any point on the axis of a current element is ______
Two long wires carrying current I1 and I2 are arranged as shown in figure. The one carrying current I1 is along is the x-axis. The other carrying current I2 is along a line parallel to the y-axis given by x = 0 and z = d. Find the force exerted at O2 because of the wire along the x-axis.
A current carrying loop consists of 3 identical quarter circles of radius R, lying in the positive quadrants of the x-y, y-z and z-x planes with their centres at the origin, joined together. Find the direction and magnitude of B at the origin.
Using Biot-Savart law, show that magnetic flux density 'B' at the centre of a current carrying circular coil of radius R is given by: `B = ("μ"_0I)/(2R)` where the terms have their usual meaning.