English

A Sonar System Fixed in a Submarine Operates at a Frequency 40.0 Khz. an Enemy Submarine Moves Towards the Sonar with a Speed of 360 Km H–1. What is the Frequency of Sound Reflected by the Submarine? Take the Speed of Sound in Water to Be 1450 - Physics

Advertisements
Advertisements

Question

A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy submarine moves towards the SONAR with a speed of 360 km h–1. What is the frequency of sound reflected by the submarine? Take the speed of sound in water to be 1450 m s–1.

Solution 1

Operating frequency of the SONAR system, ν = 40 kHz

Speed of the enemy submarine, ve = 360 km/h = 100 m/s

Speed of sound in water, = 1450 m/s

The source is at rest and the observer (enemy submarine) is moving toward it. Hence, the apparent frequency (V') received and reflected by the submarine is given by the relation:

`v' = ((v+v_e)/v) v`

= `((1450+100)/1450) xx 40 = 42.76 kHz`

The frequency (v") received by the enemy submarine is given by the relation:

`v" = (v/(v+v_s))v'`

where `v_s = 100 "m/s"`

`:. v" = (1450/(1450 - 100))xx 42.76 = 45.93`  kHz

shaalaa.com

Solution 2

Her frequency of Sonar (source) = `40.0 kHz = 40xx10^3 "Hz"`

Speed of sound waves, `v= 1450 ms^(-1)`

Speed of observers,` v_0 = 360 "km/h" = 360 xx  5/18 = 100 ms^(-1)`

Since the source is at rest and obsever moves toward the source (SONAR)

`:. v' = (v+v_0)/v.v = (1450+100)/1450 xx 40xx 10^3` = `4.276 xx 10^(4) Hz`

This frequency (v') is reflected by the enemy ship and is observed by the SONAR (which now act as observer). Therefore, in this case `v_s = 360` km/h = `100 ms^(-1)`

:. Apparent frequency, `v" = v/(v - v_s) v' = 1450/(1450 - 100) xx 4.276 xx 10^4`

 `= 4.59 xx 10^4 Hz = 45.9 kHz`

shaalaa.com
The Speed of a Travelling Wave
  Is there an error in this question or solution?
Chapter 15: Waves - Exercises [Page 389]

APPEARS IN

NCERT Physics [English] Class 11
Chapter 15 Waves
Exercises | Q 25 | Page 389

RELATED QUESTIONS

A bat emits an ultrasonic sound of frequency 1000 kHz in the air. If the sound meets a water surface, what is the wavelength of the transmitted sound? The speed of sound in air is 340 m s–1 and in water 1486 m s–1.


Show that the particle speed can never be equal to the wave speed in a sine wave if the amplitude is less than wavelength divided by 2π.


The equation of a wave travelling on a string stretched along the X-axis is given by
\[y = A  e {}^-  \left( \frac{x}{a} + \frac{t}{T} \right)^2  .\]
(a) Write the dimensions of A, a and T. (b) Find the wave speed. (c) In which direction is the wave travelling? (d) Where is the maximum of the pulse located at t = T? At t = 2 T?


A sonometer wire supports a 4 kg load and vibrates in fundamental mode with a tuning fork of frequency 416. Hz. The length of the wire between the bridges is now doubled. In order to maintain fundamental mode, the load should be changed to


A 200 Hz wave with amplitude 1 mm travels on a long string of linear mass density 6 g m−1 kept under a tension of 60 N. (a) Find the average power transmitted across a given point on the string. (b) Find the total energy associated with the wave in a 2⋅0 m long portion of the string.


Two waves, travelling in the same direction through the same region, have equal frequencies, wavelengths and amplitudes. If the amplitude of each wave is 4 mm and the phase difference between the waves is 90°, what is the resultant amplitude?


A bat emits an ultrasonic sound of frequency 1000 kHz in the air. If the sound meets a water surface, what is the wavelength of the the reflected sound? The speed of sound in air is 340 m s–1 and in water 1486 m s–1.


Sound waves of wavelength λ travelling in a medium with a speed of v m/s enter into another medium where its speed is 2v m/s. Wavelength of sound waves in the second medium is ______.


A transverse harmonic wave on a string is described by y(x, t) = 3.0 sin (36t + 0.018x + π/4) where x and y are in cm and t is in s. The positive direction of x is from left to right.

  1. The wave is travelling from right to left.
  2. The speed of the wave is 20 m/s.
  3. Frequency of the wave is 5.7 Hz.
  4. The least distance between two successive crests in the wave is 2.5 cm.

The displacement y of a particle in a medium can be expressed as, y = `10^-6sin(100t + 20x + pi/4)` m where t is in second and x in meter. The speed of the wave is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×