English
Karnataka Board PUCPUC Science Class 11

A 200 Hz Wave with Amplitude 1 Mm Travels on a Long String of Linear Mass Density 6 G M−1 Kept Under a Tension of 60 N. (A) Find the Average Power Transmitted - Physics

Advertisements
Advertisements

Question

A 200 Hz wave with amplitude 1 mm travels on a long string of linear mass density 6 g m−1 kept under a tension of 60 N. (a) Find the average power transmitted across a given point on the string. (b) Find the total energy associated with the wave in a 2⋅0 m long portion of the string.

Sum

Solution

Given,
Frequency of the wave, f = 200 Hz
Amplitude, A = 1 mm = 10−3 m
Linear mass density, m = 6 gm−3
Applied tension, T = 60 N
Now,
Let the velocity of the wave be v.
Thus, we have:

\[v = \sqrt{\left( \frac{T}{m} \right)} = \sqrt{\frac{\left( 60 \right)}{\left( 6 \times {10}^{- 3} \right)}}\] 

\[ =  {10}^2  = 100  m/s\]
(a) Average power is given as 

\[P_{average}  = 2 \pi^2 m\nu A^2  f^2 \] 

\[= 2 \times  \left( 3 . 14 \right)^2  \times \left( 6 \times {10}^{- 3} \right) \times 100 \times \left( {10}^{- 3} \right) \times  {200}^2 \] 

\[  = 473 \times  {10}^{- 3}  = 0 . 47  W\] 
(b) Length of the string = 2 m
Time required to cover this distance:

\[t = \frac{2}{100} = 0 . 02  s\] 

\[Energy = Power \times t\] 

\[ = 0 . 47 \times 0 . 02\] 

\[ = 9 . 4 \times  {10}^{- 3}   J = 9 . 4  mJ\]

shaalaa.com
The Speed of a Travelling Wave
  Is there an error in this question or solution?
Chapter 15: Wave Motion and Waves on a String - Exercise [Page 325]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 15 Wave Motion and Waves on a String
Exercise | Q 29 | Page 325

RELATED QUESTIONS

A bat emits an ultrasonic sound of frequency 1000 kHz in the air. If the sound meets a water surface, what is the wavelength of the transmitted sound? The speed of sound in air is 340 m s–1 and in water 1486 m s–1.


A steel rod 100 cm long is clamped at its middle. The fundamental frequency of longitudinal vibrations of the rod is given to be 2.53 kHz. What is the speed of sound in steel?


A train, standing in a station-yard, blows a whistle of frequency 400 Hz in still air. The wind starts blowing in the direction from the yard to the station with at a speed of 10 m s–1. What are the frequency, wavelength, and speed of sound for an observer standing on the station’s platform? Is the situation exactly identical to the case when the air is still and the observer runs towards the yard at a speed of 10 m s–1? The speed of sound in still air can be taken as 340 m s–1.


Choose the correct option:

Which of the following equations represents a wave travelling along Y-axis? 


Two strings A and B, made of same material, are stretched by same tension. The radius of string A is double of the radius of B. A transverse wave travels on A with speed `v_A` and on B with speed `v_B`. The ratio `v_A/v_B` is ______.


A wave pulse, travelling on a two-piece string, gets partially reflected and partially transmitted at the junction. The reflected wave is inverted in shape as compared to the incident one. If the incident wave has wavelength λ and the transmitted wave λ'


Two wires A and B, having identical geometrical construction, are stretched from their natural length by small but equal amount. The Young modules of the wires are YA and YB whereas the densities are \[\rho_A \text{ and }   \rho_B\]. It is given that YA > YB and \[\rho_A  >  \rho_B\]. A transverse signal started at one end takes a time t1 to reach the other end for A and t2 for B.


Two wave pulses travel in opposite directions on a string and approach each other. The shape of one pulse is inverted with respect to the other.


The displacement of the particle at x = 0 of a stretched string carrying a wave in the positive x-direction is given f(t) = A sin (t/T). The wave speed is  v. Write the wave equation.


A wave propagates on a string in the positive x-direction at a velocity \[\nu\] \[t =  t_0\] is given by \[g\left( x, t_0 \right) = A  \sin  \left( x/a \right)\]. Write the wave equation for a general time t.


A wave travelling on a string at a speed of 10 m s−1 causes each particle of the string to oscillate with a time period of 20 ms. (a) What is the wavelength of the wave? (b) If the displacement of a particle of 1⋅5 mm at a certain instant, what will be the displacement of a particle 10 cm away from it at the same instant?


A 2⋅00 m-long rope, having a mass of 80 g, is fixed at one end and is tied to a light string at the other end. The tension in the string is 256 N. (a) Find the frequencies of the fundamental and the first two overtones. (b) Find the wavelength in the fundamental and the first two overtones.


A man standing unsymmetrical position between two mountains and fires a gun. He hears the first echo after 1.5 s and the second echo after 2.5 s. If the speed of sound in air is 340 m/s, then the distance between the mountains will be ______ 


An organ pipe of length 0.4 m is open at both ends. The speed of sound in the air is 340 m/s. The fundamental frequency is ______ 


What is the interference of sound waves? 


Sound waves of wavelength λ travelling in a medium with a speed of v m/s enter into another medium where its speed is 2v m/s. Wavelength of sound waves in the second medium is ______.


A sound wave is passing through air column in the form of compression and rarefaction. In consecutive compressions and rarefactions ______.


A transverse harmonic wave on a string is described by y(x, t) = 3.0 sin (36t + 0.018x + π/4) where x and y are in cm and t is in s. The positive direction of x is from left to right.

  1. The wave is travelling from right to left.
  2. The speed of the wave is 20 m/s.
  3. Frequency of the wave is 5.7 Hz.
  4. The least distance between two successive crests in the wave is 2.5 cm.

A steel wire has a length of 12 m and a mass of 2.10 kg. What will be the speed of a transverse wave on this wire when a tension of 2.06 × 104N is applied?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×