English

A sound wave is passing through air column in the form of compression and rarefaction. In consecutive compressions and rarefactions ______. - Physics

Advertisements
Advertisements

Question

A sound wave is passing through air column in the form of compression and rarefaction. In consecutive compressions and rarefactions ______.

Options

  • density remains constant.

  • Boyle’s law is obeyed.

  • bulk modulus of air oscillates.

  • there is no transfer of heat.

MCQ
Fill in the Blanks

Solution

A sound wave is passing through air column in the form of compression and rarefaction. In consecutive compressions and rarefactions there is no transfer of heat.

Explanation:

  1. Due to compression and rarefactions density of the medium (air) changes. At compressed regions density is maximum and at rarefactions density is minimum.
  2. As density is changing, so Boyle's law is not obeyed.
  3. The bulk modulus remains the same.
  4. The time of compression and rarefaction is too small i.e. we can assume an adiabatic process and hence no transfer of heat.
shaalaa.com
The Speed of a Travelling Wave
  Is there an error in this question or solution?
Chapter 15: Waves - Exercises [Page 106]

APPEARS IN

NCERT Exemplar Physics [English] Class 11
Chapter 15 Waves
Exercises | Q 15.7 | Page 106

RELATED QUESTIONS

A bat emits an ultrasonic sound of frequency 1000 kHz in the air. If the sound meets a water surface, what is the wavelength of the transmitted sound? The speed of sound in air is 340 m s–1 and in water 1486 m s–1.


A hospital uses an ultrasonic scanner to locate tumours in a tissue. What is the wavelength of sound in the tissue in which the speed of sound is 1.7 km s–1? The operating frequency of the scanner is 4.2 MHz.


A train, standing at the outer signal of a railway station blows a whistle of frequency 400 Hz in still air. (i) What is the frequency of the whistle for a platform observer when the train (a) approaches the platform with a speed of 10 m s–1, (b) recedes from the platform with a speed of 10 m s–1? (ii) What is the speed of sound in each case? The speed of sound in still air can be taken as 340 m s–1.


A train, standing in a station-yard, blows a whistle of frequency 400 Hz in still air. The wind starts blowing in the direction from the yard to the station with at a speed of 10 m s–1. What are the frequency, wavelength, and speed of sound for an observer standing on the station’s platform? Is the situation exactly identical to the case when the air is still and the observer runs towards the yard at a speed of 10 m s–1? The speed of sound in still air can be taken as 340 m s–1.


Two strings A and B, made of same material, are stretched by same tension. The radius of string A is double of the radius of B. A transverse wave travels on A with speed `v_A` and on B with speed `v_B`. The ratio `v_A/v_B` is ______.


A wave propagates on a string in the positive x-direction at a velocity \[\nu\] \[t =  t_0\] is given by \[g\left( x, t_0 \right) = A  \sin  \left( x/a \right)\]. Write the wave equation for a general time t.


A wave travels along the positive x-direction with a speed of 20 m s−1. The amplitude of the wave is 0⋅20 cm and the wavelength 2⋅0 cm. (a) Write the suitable wave equation which describes this wave. (b) What is the displacement and velocity of the particle at x= 2⋅0 cm at time = 0 according to the wave equation written? Can you get different values of this quantity if the wave equation is written in a different fashion?


Following figure shows a string stretched by a block going over a pulley. The string vibrates in its tenth harmonic in unison with a particular tuning for. When a beaker containing water is brought under the block so that the block is completely dipped into the beaker, the string vibrates in its eleventh harmonic. Find the density of the material of the block.


A wave of frequency υ = 1000 Hz, propagates at a velocity v = 700 m/sec along x-axis. Phase difference at a given point x during a time interval M = 0.5 × 10-3 sec is ______.


An engine is approaching a cliff at a constant speed. When it is at a distance of 0.9 km from cliff it sounds a whistle. The echo of the sound is heard by the driver after 5 seconds. Velocity of sound in air is equal to 330 ms-1. The speed of the engine is ______ km/h.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×