English
Karnataka Board PUCPUC Science Class 11

Show that the Particle Speed Can Never Be Equal to the Wave Speed in a Sine Wave If the Amplitude is Less than Wavelength Divided by 2π. - Physics

Advertisements
Advertisements

Question

Show that the particle speed can never be equal to the wave speed in a sine wave if the amplitude is less than wavelength divided by 2π.

Sum

Solution

Equation of the wave is given by 
\[y = A\sin\left( \omega t - kx \right)\] 
where
          A is the amplitude
           ω is the angular frequency
           k is the wave number
Velocity of wave, \[y = A\sin\left( \omega t - kx \right)\]
Velocity of particle, \[v_p = \frac{dy}{dt} = A\omega \cos\left( \omega t - kx \right)\]
Max velocity of particle, 
\[v_{p_\max}  = A\omega\]
As given
\[A < \frac{\lambda}{2\pi}\]

\[v_{p_\max}  = \frac{\lambda\omega}{2\pi}\] 

\[ v_{p_\max}  < \frac{\omega}{k}                          \left[ \because \frac{2\pi}{\lambda} = k \right]\]

shaalaa.com
The Speed of a Travelling Wave
  Is there an error in this question or solution?
Chapter 15: Wave Motion and Waves on a String - Short Answers [Page 321]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 15 Wave Motion and Waves on a String
Short Answers | Q 4 | Page 321

RELATED QUESTIONS

A stone dropped from the top of a tower of height 300 m high splashes into the water of a pond near the base of the tower. When is the splash heard at the top given that the speed of sound in air is 340 m s–1? (g= 9.8 m s–2)


A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at 20 °C = 343 m s–1.


For the travelling harmonic wave

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of `(3λ)/4`.


A steel rod 100 cm long is clamped at its middle. The fundamental frequency of longitudinal vibrations of the rod is given to be 2.53 kHz. What is the speed of sound in steel?


A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy submarine moves towards the SONAR with a speed of 360 km h–1. What is the frequency of sound reflected by the submarine? Take the speed of sound in water to be 1450 m s–1.


The radio and TV programmes, telecast at the studio, reach our antenna by wave motion. Is it a mechanical wave or nonmechanical?


A sine wave is travelling in a medium. The minimum distance between the two particles, always having same speed, is


A sine wave is travelling in a medium. A particular particle has zero displacement at a certain instant. The particle closest to it having zero displacement is at a distance


A wave travels along the positive x-direction with a speed of 20 m s−1. The amplitude of the wave is 0⋅20 cm and the wavelength 2⋅0 cm. (a) Write the suitable wave equation which describes this wave. (b) What is the displacement and velocity of the particle at x= 2⋅0 cm at time = 0 according to the wave equation written? Can you get different values of this quantity if the wave equation is written in a different fashion?


A wire of length 2⋅00 m is stretched to a tension of 160 N. If the fundamental frequency of vibration is 100 Hz, find its linear mass density.


The equation for the vibration of a string, fixed at both ends vibrating in its third harmonic, is given by
\[y = \left( 0 \cdot 4  cm \right)  \sin\left[ \left( 0 \cdot 314  {cm}^{- 1} \right)  x \right]  \cos  \left[ \left( 600\pi  s^{- 1} \right)  t \right]\]
(a) What is the frequency of vibration? (b) What are the positions of the nodes? (c) What is the length of the string? (d) What is the wavelength and the speed of two travelling waves that can interfere to give this vibration?


What is the interference of sound waves? 


A string 1 m long is fixed at one end. The other end is moved up and down with a frequency of 20 Hz. Due to this, a stationary wave with four complete loops gets produced on the string. Find the speed of the progressive wave which produces the stationary wave. 


A bat emits an ultrasonic sound of frequency 1000 kHz in the air. If the sound meets a water surface, what is the wavelength of the the reflected sound? The speed of sound in air is 340 m s–1 and in water 1486 m s–1.


Speed of sound waves in a fluid depends upon ______.

  1. directty on density of the medium.
  2. square of Bulk modulus of the medium.
  3. inversly on the square root of density.
  4. directly on the square root of bulk modulus of the medium.

At what temperatures (in °C) will the speed of sound in air be 3 times its value at O°C?


If c is r.m.s. speed of molecules in a gas and v is the speed of sound waves in the gas, show that c/v is constant and independent of temperature for all diatomic gases.


Given below are some functions of x and t to represent the displacement of an elastic wave.

  1. y = 5 cos (4x) sin (20t)
  2. y = 4 sin (5x – t/2) + 3 cos (5x – t/2)
  3. y = 10 cos [(252 – 250) πt] cos [(252 + 250)πt]
  4. y = 100 cos (100πt + 0.5x)

State which of these represent

  1. a travelling wave along –x direction
  2. a stationary wave
  3. beats
  4. a travelling wave along +x direction.

Given reasons for your answers.


An engine is approaching a cliff at a constant speed. When it is at a distance of 0.9 km from cliff it sounds a whistle. The echo of the sound is heard by the driver after 5 seconds. Velocity of sound in air is equal to 330 ms-1. The speed of the engine is ______ km/h.


The displacement y of a particle in a medium can be expressed as, y = `10^-6sin(100t + 20x + pi/4)` m where t is in second and x in meter. The speed of the wave is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×