English
Karnataka Board PUCPUC Science Class 11

A Spherical Volume Contains a Uniformly Distributed Charge of Density 2 ⋅ 0 × 10 − 4 C M − 3 . - Physics

Advertisements
Advertisements

Question

A spherical volume contains a uniformly distributed charge of density  2.0 × 10 -4 Cm-3 Find the electric field at a point inside the volume at a distance 4⋅0 cm from the centre.

Answer in Brief

Solution

Given :
Volume charge density, ρ = 2 ×10-4 C /m3
Let us assume a concentric spherical surface inside the given sphere with radius = 4 cm = 4 ×10-2
The charge enclosed in the spherical surface assumed can be found by multiplying the volume charge density with the volume of the sphere. Thus,

`"q" = ρ xx 4/3 pi"r"^3`

`=> "q"= (2 xx 10^-4) xx 4/3 pi"r"^3`

The net flux through the spherical surface, 

`phi ="q"/∈_0`

The surface area of the spherical surface of radius r cm:
A = 4πr2

Electric field,

`"E" = "q"/(∈_0 xx "A")`

`"E" = (2 xx 10^-4 xx 4 pi "r"^3)/(∈_0 xx 3 xx 4 pi"r"^2)`

`"E" = (2 xx 10 ^-4 xx "r")/(3 xx ∈ _0)`

The electric field at the point inside the volume at a distance 4⋅0 cm from the centre,

`"E" = ((2 xx 10^-4) xx (4 xx 10^-2))/(3 xx (8.55 xx 10^-12)) "N" // "C"`

`"E" = 3.0 xx 10^5 "N" // "C"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Gauss’s Law - Exercises [Page 141]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 8 Gauss’s Law
Exercises | Q 9 | Page 141

RELATED QUESTIONS

 Use Gauss's law to find the electric field due to a uniformly charged infinite plane sheet. What is the direction of field for positive and negative charge densities?

 


Find the electric field intensity due to a uniformly charged spherical shell at a point (i) outside the shell. Plot the graph of electric field with distance from the centre of the shell.


Find the electric field intensity due to a uniformly charged spherical shell at a point (ii) inside the shell. Plot the graph of electric field with distance from the centre of the shell.


A thin metallic spherical shell of radius R carries a charge Q on its surface. A point charge`Q/2` is placed at its centre C and an other charge +2Q is placed outside the shell at a distance x from the centre as shown in the figure. Find (i) the force on the charge at the centre of shell and at the point A, (ii) the electric flux through the shell.


Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude 17.0 × 10−22 C/m2. What is E:

  1. in the outer region of the first plate,
  2. in the outer region of the second plate, and
  3. between the plates?

Find the ratio of the potential differences that must be applied across the parallel and series combination of two capacitors C1 and C2 with their capacitances in the ratio 1 : 2 so that the energy stored in the two cases becomes the same.


Using Gauss's law in electrostatics, deduce an expression for electric field intensity due to a uniformly charged infinite plane sheet. If another identical sheet is placed parallel to it, show that there is no electric field in the region between the two sheets ?


Using Gauss’ law deduce the expression for the electric field due to a uniformly charged spherical conducting shell of radius R at a point

(i) outside and (ii) inside the shell.

Plot a graph showing variation of electric field as a function of r > R and r < R.

(r being the distance from the centre of the shell)


Using Gauss’s law, prove that the electric field at a point due to a uniformly charged infinite plane sheet is independent of the distance from it.


How is the field directed if (i) the sheet is positively charged, (ii) negatively charged?


A rubber balloon is given a charge Q distributed uniformly over its surface. Is the field inside the balloon zero everywhere if the balloon does not have a spherical surface?


A thin, metallic spherical shell contains a charge Q on it. A point charge q is placed at the centre of the shell and another charge q1 is placed outside it as shown in the  following figure . All the three charges are positive. The force on the charge at the centre is ____________.


A positive point charge Q is brought near an isolated metal cube.


A large non-conducting sheet M is given a uniform charge density. Two uncharged small metal rods A and B are placed near the sheet as shown in the following  figure.

(a) M attracts A.
(b) M attracts B.
(c) A attracts B.
(d) B attracts A.


Find the flux of the electric field through a spherical surface of radius R due to a charge of 10−7 C at the centre and another equal charge at a point 2R away from the centre in the following figure.


If one penetrates a uniformly charged spherical cloud, electric field strength ______.

The electric field inside a spherical shell of uniform surface charge density is ______.

“A uniformly charged conducting spherical shell for the points outside the shell behaves as if the entire charge of the shell is concentrated at its centre”. Show this with the help of a proper diagram and verify this statement.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×