English

A triangle ABC with AB = 3 cm, BC = 6 cm and AC = 4 cm is enlarged to ΔDEF such that the longest side of ΔDEF = 9 cm. Find the scale factor and hence, the lengths of the other sides of ΔDEF. - Mathematics

Advertisements
Advertisements

Question

A triangle ABC with AB = 3 cm, BC = 6 cm and AC = 4 cm is enlarged to ΔDEF such that the longest side of ΔDEF = 9 cm. Find the scale factor and hence, the lengths of the other sides of ΔDEF.

Sum

Solution

Triangle ABC is enlarged to DEF.

So, the two triangles will be similar.

∴ `(AB)/(DE) = (BC)/(EF) = (AC)/(DF)`

Longest side in ΔABC = BC = 6 cm

Corresponding longest side in ΔDEF = EF = 9 cm

Scale factor = `(EF)/(BC) = 9/6 = 3/2 = 1.5`

∴ `(AB)/(DE) = (BC)/(EF) = (AC)/(DF) = 2/3`

`DE = 3/2 AB = 9/2 = 4.5  cm`

`DF = 3/2 AC = 12/2 = 6  cm`

shaalaa.com
Axioms of Similarity of Triangles
  Is there an error in this question or solution?
Chapter 15: Similarity (With Applications to Maps and Models) - Exercise 15 (E) [Page 231]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 15 Similarity (With Applications to Maps and Models)
Exercise 15 (E) | Q 21 | Page 231

RELATED QUESTIONS

PQR is a triangle. S is a point on the side QR of ΔPQR such that ∠PSR = ∠QPR. Given QP = 8 cm, PR = 6 cm and SR = 3 cm.

  1. Prove ΔPQR ∼ ΔSPR.
  2. Find the length of QR and PS.
  3. `"area of ΔPQR"/"area of ΔSPR"`


Given: RS and PT are altitudes of ΔPQR. Prove that:

  1. ΔPQT ~ ΔQRS,
  2. PQ × QS = RQ × QT.

In ∆PQR, ∠Q = 90° and QM is perpendicular to PR. Prove that:

  1. PQ2 = PM × PR
  2. QR2 = PR × MR
  3. PQ2 + QR2 = PR2

In the given figure, AX : XB = 3 : 5


Find:

  1. the length of BC, if the length of XY is 18 cm.
  2. the ratio between the areas of trapezium XBCY and triangle ABC.

In the figure, given below, ABCD is a parallelogram. P is a point on BC such that BP : PC = 1 : 2. DP produced meets AB produces at Q. Given the area of triangle CPQ = 20 cm2.


Calculate:

  1. area of triangle CDP,
  2. area of parallelogram ABCD.

Triangle ABC is an isosceles triangle in which AB = AC = 13 cm and BC = 10 cm. AD is
perpendicular to BC. If CE = 8 cm and EF ⊥ AB, find:

i)`"area of ADC"/"area of FEB"`       ii)`"area of ΔAFEB"/"area of ΔABC"`


On a map, drawn to a scale of 1 : 20000, a rectangular plot of land ABCD has AB = 24 cm and BC = 32 cm. Calculate : 

  1. the diagonal distance of the plot in kilometer.
  2. the area of the plot in sq. km.

In a triangle PQR, L and M are two points on the base QR, such that ∠LPQ = ∠QRP and ∠RPM = ∠RQP. Prove that:

  1. ΔPQL ∼ ΔRPM
  2. QL × RM = PL × PM
  3. PQ2 = QR × QL


In the give figure, ABC is a triangle with ∠EDB = ∠ACB. Prove that ΔABC ∼ ΔEBD. If BE = 6 cm, EC = 4 cm, BD = 5 cm and area of ΔBED = 9 cm2. Calculate the: 

  1. length of AB
  2. area of ΔABC


In fig. ABCD is a trapezium in which AB | | DC and AB = 2DC. Determine the ratio between the areas of ΔAOB and ΔCOD.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×