Advertisements
Advertisements
Question
आव्यूह A `= [(1,1,1),(1,2,-3),(2,-1,3)]` के लिए दर्शाइए कि `A^3 - 6A^2 + 5 A + 11 I = 0` है। इसकी सहायता से A-1 ज्ञात कीजिए।
Solution
A `= [(1,1,1),(1,2,-3),(2,-1,3)]`
`"A"^2 = [(1,1,1),(1,2,-3),(2,-1,3)] [(1,1,1),(1,2,-3),(2,-1,3)] = [(4,2,1),(-3,8,-14),(7,-3,14)]`
`"A"^3 = "A"^2 "A" = [(4,2,1),(-3,8,-14),(7,-3,14)] [(1,1,1),(1,2,-3),(2,-1,3)]`
`= [(8,7,1),(-23,27,-69),(32,-13,58)]`
`"LHS" = "A"^3 - 6"A"^2 + 5 "A" + 11 "I"`
`= [(8,7,1),(-23,27,-69),(32,-13,58)] - 6 [(4,2,1),(-3,8,-14),(7,-3,14)] + 5 [(1,1,1),(1,2,-3),(2,-1,3)] + 11 [(1,0,0),(0,1,0),(0,0,1)]`
`= [(8,7,1),(-23,27,-69),(32,-13,58)] - [(24,12,6),(-18,48,-84),(42,-18,84)] + [(5,5,5),(5,10,-15),(10,-5,15)] + [(11,0,0),(0,11,0),(0,0,11)]`
`= [(8 - 24 + 5 + 11, 7 - 12 + 5 + 0, 1 - 6 + 5 + 0),(-23 + 18 + 5 + 0, 27 - 48 + 10 + 11, -69 + 84 - 15 + 0),(32 - 42 + 10 + 0,-13 + 18 - 5 + 0, 58 - 84 + 15 + 11)]`
`= [(0,0,0),(0,0,0),(0,0,0)] = 0 ="RHS"`
`"A"^3 - 6"A"^2 + 5"A" + 11 "I" = 0`
`"A"^3 - 6"A"^2 + 5"A" = -11 "I"`
`"A"^2 "AA"^-1 = 6 "AAA"^-1 + 5 "AA"^-1 = 11"IA"^-1`
`11"A"^-1 = - "A"^2 + 6"A" - 5"I" = [(-4,-2,-1),(3,-8,14),(-7,3,-14)] + 6 [(1,1,1),(1,2,-3),(2,-1,3)] - 5 [(1,0,0),(0,1,0),(0,0,1)]`
`= [(-4,-2,-1),(3,-8,14),(-7,3,-14)] + [(6,6,6),(6,12,-18),(12,-6,18)] - [(5,0,0),(0,5,0),(0,0,5)]`
`= [(-3,4,5),(9,-1,-4),(5,-3,-1)]`
`"A"^-1 = 1/11 [(-3,4,5),(9,-1,-4),(5,-3,-1)]`
APPEARS IN
RELATED QUESTIONS
प्रश्न में आव्यूह का सहखंडज (adjoint) ज्ञात कीजिए।
`[(1,2),(3,4)]`
प्रश्न में आव्यूह का सहखंडज (adjoint) ज्ञात कीजिए।
`[(1,-1,2),(2,3,5),(-2,0,1)]`
प्रश्न में सत्यापित कीजिए कि A (adj A) = (adj A). A =|A|. I है।
`[(1,-1,2),(3,0,-2),(1,0,3)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(2,-2),(4,3)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(-1,5),(-3,2)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(1,2,3),(0,2,4),(0,0,5)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(1,0,0),(3,3,0),(5,2,-1)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(2,1,3),(4,-1,0),(-7,2,1)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(1,-1,2),(0,2,-3),(3,-2,4)]`
प्रश्न में दिए गए आव्यूह के व्युत्क्रम (जिनका अस्तित्व हो) ज्ञात कीजिए।
`[(1,0,0),(0,cos alpha, sin alpha),(0,sin alpha, -cos alpha)]`
यदि `"A" = [(3,1),(-1,2)]` है तो दर्शाइए कि A2 - 5A + 7I = 0 है। इसकी सहायता से A-1 ज्ञात कीजिए।
आव्यूह A `= [(3,2),(1,1)]` के लिए a और b ऐसी संख्याएँ ज्ञात कीजिए ताकि A2 + aA + bI = 0 हो।
यदि `A = [(2,-1,1),(-1,2,-1),(1,-1,2)],` तो सत्यापित कीजिए कि `A^3 - 6A^2 + 9A - 4I = 0` है तथा इसकी सहायता से A-1 ज्ञात कीजिए।
यदि A, 3 × 3 कोटि का आव्यूह है, तो |adj A| का मान है:
यदि A कोटि 2 को व्युत्क्रमणीय आव्यूह है तो det (A-1) बराबर है:
यदि x, y, z शून्येतर वास्तविक संख्याएँ हों तो आव्यूह A = `[(x,0,0),(0,y,0),(0,0,z)]` का व्युत्क्रम है: