English

Answer the following question: Obtain the equation of the line which is parallel to the X−axis and making an intercept of 5 on the Y−axis. - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following question:

Obtain the equation of the line which is parallel to the X−axis and making an intercept of 5 on the Y−axis.

Sum

Solution

Equation of a line parallel to X-axis with y-intercept ‘k’ is y = k.

Here, y-intercept = 5

∴ The equation of the required line is y = 5.

shaalaa.com
General Form of Equation of a Line
  Is there an error in this question or solution?
Chapter 5: Straight Line - Miscellaneous Exercise 5 [Page 125]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 5 Straight Line
Miscellaneous Exercise 5 | Q II. (6) (c) | Page 125

RELATED QUESTIONS

Find the slope, X-intercept, Y-intercept of the following line:

3x − y − 9 = 0


Find the slope, X-intercept, Y-intercept of the following line:

x + 2y = 0


Write the following equation in ax + by + c = 0 form.

y = 2x – 4


Write the following equation in ax + by + c = 0 form.

y = 4


Write the following equation in ax + by + c = 0 form.

`x/2 + y/4` = 1


Show that lines x – 2y – 7 = 0 and 2x − 4y + 15 = 0 are parallel to each other


Show that lines x − 2y − 7 = 0 and 2x + y + 1 = 0 are perpendicular to each other. Find their point of intersection


Find the co-ordinates of the foot of the perpendicular drawn from the point A(–2, 3) to the line 3x – y – 1 = 0


Find the equation of the line whose X-intercept is 3 and which is perpendicular to the line 3x − y + 23 = 0.


Find the distance of the point A(−2, 3) from the line 12x − 5y − 13 = 0 


Find the distance between parallel lines 4x − 3y + 5 = 0 and 4x − 3y + 7 = 0


Find the equation of the line passing through the point of intersection of lines x + y − 2 = 0 and 2x − 3y + 4 = 0 and making intercept 3 on the X-axis


D(−1, 8), E(4, −2), F(−5, −3) are midpoints of sides BC, CA and AB of ∆ABC Find equations of sides of ∆ABC


D(−1, 8), E(4, −2), F(−5, −3) are midpoints of sides BC, CA and AB of ∆ABC Find co-ordinates of the circumcenter of ΔABC


Select the correct option from the given alternatives:

The equation of a line, having inclination 120° with positive direction of X−axis, which is at a distance of 3 units from the origin is


Answer the following question:

Find the distance of the origin from the line x = – 2


Answer the following question:

Which of the following lines passes through the origin?


Answer the following question:

Obtain the equation of the line which is parallel to the Y−axis and 2 units to the left of it.


Answer the following question:

Obtain the equation of the line which is parallel to the Y−axis and making an intercept of 3 on the X−axis.


Answer the following question:

Find the distance of the origin from the line 12x + 5y + 78 = 0


Answer the following question:

Find the distance between the parallel lines 3x + 4y + 3 = 0 and 3x + 4y + 15 = 0


Answer the following question:

Find the equation of the line which passes through the point of intersection of lines x + y + 9 = 0, 2x + 3y + 1 = 0 and which makes X-intercept 1.


Answer the following question:

Find the distance of the line 4x − y = 0 from the point P(4, 1) measured along the line making an angle of 135° with the positive X-axis


A particle is moving in a straight line according to as S = 24t + 3t2 - t3, then the time it will come to rest is ______ 


Let the straight line x = b divide the area enclosed by y = (1 - x)2, y = 0 and x = 0 into two parts R1(0 ≤ x ≤ b) and R2 (b ≤ x ≤ 1) such that `R_1 - R_2 = 1/4`. Then b equals ______ 


The equation 12x2 + 7xy + ay2 + 13x - y + 3 = 0 represents a pair of perpendicular lines. Then the value of 'a' is ______  


The equation 3x2 - 4xy + y2 = 0 represent a pair of straight lines whose slopes differ by ______.


If a plane has x-intercept l, y-intercept m and z-intercept n, and perpendicular distance of plane from the origin is k, then _______.


Find the distance of the origin from the line 7x + 24y – 50 = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×