Advertisements
Advertisements
Question
Answer the following question.
What do you mean by geostationary satellite?
Solution
Some satellites that revolve around the Earth in the equatorial planes have the same sense of rotation as that of the Earth. They also have the same period of rotation as that of the Earth i.e., 24 hours. Due to this, these satellites appear stationary from the Earth’s surface and are known as geostationary satellites.
APPEARS IN
RELATED QUESTIONS
A spacecraft consumes more fuel in going from the earth to the moon than it takes for a return trip. Comment on this statement.
A satellite is orbiting the earth close to its surface. A particle is to be projected from the satellite to just escape from the earth. The escape speed from the earth is ve. Its speed with respect to the satellite
A body stretches a spring by a particular length at the earth's surface at the equator. At what height above the south pole will it stretch the same spring by the same length? Assume the earth to be spherical.
A satellite of mass 1000 kg is supposed to orbit the earth at a height of 2000 km above the earth's surface. Find (a) its speed in the orbit, (b) is kinetic energy, (c) the potential energy of the earth-satellite system and (d) its time period. Mass of the earth = 6 × 1024kg.
Find the minimum colatitude which can directly receive a signal from a geostationary satellite.
Derive an expression for the critical velocity of a satellite.
Draw a labelled diagram to show different trajectories of a satellite depending upon the tangential projection speed.
Derive an expression for the binding energy of a body at rest on the Earth’s surface of a satellite.
Answer the following question in detail.
Why an astronaut in an orbiting satellite has a feeling of weightlessness?
Describe how an artificial satellite using a two-stage rocket is launched in an orbit around the Earth.
Calculate the kinetic energy, potential energy, total energy and binding energy of an artificial satellite of mass 2000 kg orbiting at a height of 3600 km above the surface of the Earth.
Given: G = 6.67 × 10-11 Nm2/kg2
R = 6400 km, M = 6 × 1024 kg
Solve the following problem.
Calculate the value of the universal gravitational constant from the given data. Mass of the Earth = 6 × 1024 kg, Radius of the Earth = 6400 km, and the acceleration due to gravity on the surface = 9.8 m/s2.
The ratio of energy required to raise a satellite of mass 'm' to a height 'h' above the earth's surface of that required to put it into the orbit at same height is ______.
[R = radius of the earth]
The kinetic energy of a revolving satellite (mass m) at a height equal to thrice the radius of the earth (R) is ______.
If a body weighing 40 kg is taken inside the earth to a depth to radius of the earth, then `1/8`th the weight of the body at that point is ______.
If the Earth-Sun distance is held constant and the mass of the Sun is doubled, then the period of revolution of the earth around the Sun will change to ____________.
If a body weighing 40 kg-wt is taken inside the earth to a depth to `1/2` th radius of the earth, then the weight of the body at that point is ____________.
A satellite of mass 'm', revolving round the earth of radius 'r' has kinetic energy (E). Its angular momentum is ______.
A satellite of mass 'm' is revolving around the earth of mass 'M' in an orbit of radius 'r' with constant angular velocity 'ω'. The angular momentum of the satellite is ______.
(G =gravitational constant)
A satellite is to revolve round the earth in a circle of radius 9600 km. The speed with which this satellite be projected into an orbit, will be ______.
A geostationary satellite is orbiting the earth at a height 6R above the surface of the earth, where R is the radius of the earth. This time period of another satellite at a height (2.5 R) from the surface of the earth is ______.
Satellites orbiting the earth have finite life and sometimes debris of satellites fall to the earth. This is because ______.
Show the nature of the following graph for a satellite orbiting the earth.
- KE vs orbital radius R
- PE vs orbital radius R
- TE vs orbital radius R.
A satellite is revolving in a circular orbit at a height 'h' above the surface of the earth of radius 'R'. The speed of the satellite in its orbit is one-fourth the escape velocity from the surface of the earth. The relation between 'h' and 'R' is ______.
A satellite is revolving around a planet in a circular orbit close to its surface and ρ is the mean density and R is the radius of the planet, then the period of ______.
(G = universal constant of gravitation)