English

Arg(z) = π3 को संतुष्ट करने वाले z का बिंदु पथ ______ है। - Mathematics (गणित)

Advertisements
Advertisements

Question

arg(z) = `pi/3` को संतुष्ट करने वाले z का बिंदु पथ ______ है।

Fill in the Blanks

Solution

arg(z) = `pi/3` को संतुष्ट करने वाले z का बिंदु पथ `underlinebb(y = sqrt3x)` है।

स्पष्टीकरण:

मान लीजिए कि z = x + iy, तो इसका ध्रुवीय रूप z = r(cosθ + isinθ) है, जहाँ `tantheta = y/x` और θ, arg(z) है।

`theta = pi/3` दिया है।

इस प्रकार, `tan  pi/3 = y/x ⇒ y = sqrt3x`, जहाँ x > 0, y > 0 है।

अतः, z का बिंदु पथ, मूलबिंदु के अतिरिक्त `y =  sqrt3x`, का प्रथम चतुर्थाश में एक भाग है।

shaalaa.com
आर्गंड तल और ध्रुवीय निरूपण
  Is there an error in this question or solution?
Chapter 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - हल किए हुए उदाहरण [Page 84]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
हल किए हुए उदाहरण | Q 16 (iii) | Page 84

RELATED QUESTIONS

सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

-1 – i


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए

-3


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए

i


यदि `(2z + 1)/(iz + 1)` का काल्पनिक भाग –2 है, तो दर्शाइए कि z को आर्गंड तल में निरूपित करने वाले बिंदु का बिंदु पथ एक सरल रेखा है।


मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार है कि `barz_1 + ibarz_2` = 0 है तथा arg (z1 z2) = π, तब arg (z1) ज्ञात कीजिए।


मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |z1 + x2| = |z1| + |z2| तब दर्शाइए कि arg(z1) – arg(z2) = 0


यदि |z| = 2 और arg(z) = `pi/4` है, तो z = ______ है।


सम्मिश्र संख्या (i25)3 का ध्रुवीय रूप क्या है?


यदि a = cosθ + isinθ है, तो `(1 + "a")/(1 - "a")` का मान ज्ञात कीजिए।


यदि arg(z − 1) = arg(z + 3i) है, तो x − 1 : y ज्ञात कीजिए, जहाँ z = x + iy


सम्मिश्र संख्या z = `(1 - i)/(cos  pi/3 + i sin  pi/3)` को ध्रुवीय रूप में लिखिए।


यदि z और w दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |zw| = 1 और arg(z) − arg(w) = `π/2`, तो दर्शाइए कि `barz`w = –i


arg(z) + arg`barz  (barz ≠ 0)` ______ है।


यदि |z| = 4 और arg(z) = `(5π)/6`, तो z = ______


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

मान लीजिए कि z1 और z2 दो ऐसी सम्मिश्र संख्याएँ हैं कि |z1 + z2| = |z1| + |z2| तब arg(z1 – z2) = 0


z ज्ञात कीजिए, यदि |z| = 4 और arg(z) = `(5pi)/6`


`(1 + isqrt3)^2` का मुख्य कोणांक ज्ञात कीजिए।


|z1 + z2| = |z1| + |z2| संभव है, यदि


जब x < 0 तो arg(x) का मान है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×