Advertisements
Advertisements
Question
जब x < 0 तो arg(x) का मान है
Options
0
`pi/2`
π
इनमें से कोई नहीं
Solution
π
स्पष्टीकरण:
देखिए z = –x + 0i और x < 0
⇒ |z| = `sqrt((-1)^2 + (0)^2)`
= 1
पता है कि, (−x, 0) बिंदु वास्तविक अक्ष के नकारात्मक पक्ष पर स्थित है।
इसलिए, प्रधान तर्क (z) = π है।
सही विकल्प π है।
APPEARS IN
RELATED QUESTIONS
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
-1 – i
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए
-3
यदि `(2z + 1)/(iz + 1)` का काल्पनिक भाग –2 है, तो दर्शाइए कि z को आर्गंड तल में निरूपित करने वाले बिंदु का बिंदु पथ एक सरल रेखा है।
मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |z1 + x2| = |z1| + |z2| तब दर्शाइए कि arg(z1) – arg(z2) = 0
arg(z) = `pi/3` को संतुष्ट करने वाले z का बिंदु पथ ______ है।
सम्मिश्र संख्या (i25)3 का ध्रुवीय रूप क्या है?
`sin pi/5 + i(1 - cos pi/5)` का कोणांक है
यदि a = cosθ + isinθ है, तो `(1 + "a")/(1 - "a")` का मान ज्ञात कीजिए।
दर्शाइए कि प्रतिबंध arg`((z - 1)/(z + 1)) = pi/4` को संतुष्ट करने वाली सम्मिश्र संख्या z एक वृत्त पर स्थित है।
यदि arg(z − 1) = arg(z + 3i) है, तो x − 1 : y ज्ञात कीजिए, जहाँ z = x + iy
यदि z1 और z2 दो ऐसी सम्मिश्र संख्याएँ हैं ताकि |z1| = |z2| और arg(z1) + arg(z2) = π, तो दर्शाइए कि z1 = `-barz_2`
यदि सम्मिश्र संख्या z1 और z2 के लिए, arg(z1) − arg(z2) = 0, तब दर्शाइए कि `|z_1 - z_2| = |z_1| - |z_2|`
सम्मिश्र संख्या z = `(1 - i)/(cos pi/3 + i sin pi/3)` को ध्रुवीय रूप में लिखिए।
यदि z और w दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |zw| = 1 और arg(z) − arg(w) = `π/2`, तो दर्शाइए कि `barz`w = –i
arg(z) + arg`barz (barz ≠ 0)` ______ है।
यदि |z| = 4 और arg(z) = `(5π)/6`, तो z = ______
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
मान लीजिए कि z1 और z2 दो ऐसी सम्मिश्र संख्याएँ हैं कि |z1 + z2| = |z1| + |z2| तब arg(z1 – z2) = 0
`(1 + isqrt3)^2` का मुख्य कोणांक ज्ञात कीजिए।
|z1 + z2| = |z1| + |z2| संभव है, यदि