English

मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |z1 + x2| = |z1| + |z2| तब दर्शाइए कि arg(z1) – arg(z2) = 0 - Mathematics (गणित)

Advertisements
Advertisements

Question

मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |z1 + x2| = |z1| + |z2| तब दर्शाइए कि arg(z1) – arg(z2) = 0

Sum

Solution

मान लीजिए कि z1 = r1(cosθ1 + isinθ1) तथा z2 = r2(cosθ2 + isinθ2)

जहाँ r1 = |z1|, arg(z1) = θ1, r2 = |z2| और arg(z2) = θ2 

हमें ज्ञात है |z1 + z2| = |z1| + |z2|

= `|r_1(cos theta_1 + isin theta_1) + r_2 (cos theta_2 + sin theta_2)|`

= r1 + r2

= `r_1^2 + r_2^2 + 2r_1r_2 cos(theta_1 - theta_2)`

= (r1 + r2)2

⇒ `cos(theta_1 - theta_2)` = 1

⇒ `theta_1 - theta_2 = 0` अर्थात् θ1 = θ2

अर्थात् arg(z1) = arg(z2) या arg(z1) - arg(z2) = 0

shaalaa.com
आर्गंड तल और ध्रुवीय निरूपण
  Is there an error in this question or solution?
Chapter 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - हल किए हुए उदाहरण [Page 80]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
हल किए हुए उदाहरण | Q 7 | Page 80

RELATED QUESTIONS

सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

-1 – i


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए

-3


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

`sqrt3  + i`


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए

i


यदि `(2z + 1)/(iz + 1)` का काल्पनिक भाग –2 है, तो दर्शाइए कि z को आर्गंड तल में निरूपित करने वाले बिंदु का बिंदु पथ एक सरल रेखा है।


मान लीजिए कि z1 और z2 दो सम्मिश्र संख्याएँ इस प्रकार है कि `barz_1 + ibarz_2` = 0 है तथा arg (z1 z2) = π, तब arg (z1) ज्ञात कीजिए।


यदि |z| = 2 और arg(z) = `pi/4` है, तो z = ______ है।


`sin  pi/5 + i(1 - cos  pi/5)` का कोणांक है


यदि a = cosθ + isinθ है, तो `(1 + "a")/(1 - "a")` का मान ज्ञात कीजिए।


दर्शाइए कि प्रतिबंध arg`((z - 1)/(z + 1)) = pi/4` को संतुष्ट करने वाली सम्मिश्र संख्या z एक वृत्त पर स्थित है।


यदि arg(z − 1) = arg(z + 3i) है, तो x − 1 : y ज्ञात कीजिए, जहाँ z = x + iy


यदि सम्मिश्र संख्या z1 और z2 के लिए, arg(z1) − arg(z2) = 0, तब दर्शाइए कि `|z_1 - z_2| = |z_1| - |z_2|`


सम्मिश्र संख्या z = `(1 - i)/(cos  pi/3 + i sin  pi/3)` को ध्रुवीय रूप में लिखिए।


यदि z और w दो सम्मिश्र संख्याएँ इस प्रकार हैं कि |zw| = 1 और arg(z) − arg(w) = `π/2`, तो दर्शाइए कि `barz`w = –i


arg(z) + arg`barz  (barz ≠ 0)` ______ है।


यदि |z| = 4 और arg(z) = `(5π)/6`, तो z = ______


|z1 + z2| = |z1| + |z2| संभव है, यदि


जब x < 0 तो arg(x) का मान है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×