Advertisements
Advertisements
Question
θ का वह वास्तविक मान, जिसके लिए `(1 + i cos theta)/(1 - 2i cos theta)` एक वास्तविक संख्या है, निम्नलिखित में से कौन सा है:
Options
`npi + pi/4`
`npi + (-1)^n pi/4`
`2npi +- pi/2`
इनमें से कोई नहीं
Solution
`bb(2npi +- pi/2)`
स्पष्टीकरण:
देखिए z = `(1 + i cos theta)/(1 - 2i cos theta)`
इसके संयुग्म के साथ गुणा करें।
= `(1 + i cos theta)/(1 - 2i cos theta) xx (1 + 2i cos theta)/(1 + 2i cos theta)`
= `(1 + 2i cos theta + i cos theta + 2i^2 cos^2 theta)/(1 - 4i^2 cos^2 theta)`
= `(1 + 3i cos theta - 2 cos^2 theta)/(1 + 4 cos^2 theta)`
आगे हल करें।
= `(1 - 2 cos^2 theta)/(1 + 4 cos^2 theta) + (3 cos theta)/(1 + 4 cos^2 theta)i`
जानते हैं कि, विशुद्ध रूप से z वास्तविक है।
⇒ `(3 cos theta)/(1 + 4cos^2 theta)` = 0
⇒ 3cosθ = 0
⇒ cosθ = 0
⇒ θ = `2npi +- pi/2`, n ∈ N
सही विकल्प `2npi +- pi/2` है।
APPEARS IN
RELATED QUESTIONS
सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:
4 - 3i
निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:
`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
1 – i
किन्हीं दो सम्मिश्र संख्याओं z1 और z2 के लिए, सिद्ध कीजिए:
Re(z1z2) = Rez1 Rez2 – Imz1 Imz2
यदि `x – iy = sqrt((a-ib)/(c - id))` , तो सिद्ध कीजिए की `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|` का मान ज्ञात कीजिए।
यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2
यदि `((1+i)/(1-i))^m` = 1, तो m का न्यूनतम पूर्णांक मान ज्ञात कीजिए।
मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3
'a' का वास्तविक मान जिसके लिए 3i3 – 2ai2 + (1 – a)i + 5 वास्तविक है ______ होगा।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
यदि n एक धनात्मक पूर्णाक है, तो in + (i)n+1 + (i)n+2 + (i)n+3 का मान शून्य है।
1 - i के कोणांक का मुख्य मान क्या है?
यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:
`sum_(n = 1)^13 (i^n + i^(n + 1))` का मान ज्ञात कीजिए, जहाँ n ∈ N
यदि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, तो (x, y) ज्ञात कीजिए।
यदि (1 + i)z = `(1 - i)barz` है, तो दर्शाइए कि z = `-ibarz`
यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।
`sqrt(-25) xx sqrt(-9)` का मान ______ है।
यदि z1 और z2 ऐसी सम्मिश्र संख्याएँ हैं कि z1 + z2 एक वास्तविक संख्या है, तो z2 = ______
यदि `|(z - 2)/(z + 2)| = pi/6` है, तो z का बिंदु पथ ______ है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
किसी भी सम्मिश्र संख्या z के लिए, |z| + |z – 1| का कम से कम मान 1 है।
(z + 3) (`overlinez` + 3) का मान निम्नलिखित में से किसके समतुल्य है
यदि सम्मिश्र संख्या 2 − i से निरूपित बिंदु को मूलबिंदु के प्रति दक्षिणावर्त दिशा में एक कोण `π/2` पर घुमाया जाए, तो उस बिंदु की नयी स्थिति होगी
यदि a + ib = c + id, तो
यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है