English

यदि |z-2z+2|=π6 है, तो z का बिंदु पथ ______ है। - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि `|(z - 2)/(z + 2)| = pi/6` है, तो z का बिंदु पथ ______ है।

Fill in the Blanks

Solution

यदि `|(z - 2)/(z + 2)| = pi/6` है, तो z का बिंदु पथ वृत्त है।

स्पष्टीकरण:

पता है कि, `|(z - 2)/(z + 2)| = pi/6`

देखिए z = x + iy

⇒ `|(x + iy - 2)/(x + iy + 2)| = pi/6`

⇒ `|((x - 2) + iy)/((x + 2) + iy)| = pi/6`

⇒ `6|(x - 2) + iy| = pi|(x + 2) + iy|`

⇒ `6sqrt((x - 2)^2 + y^2) = pisqrt((x + 2)^2 + y^2)`

आगे हल करें

⇒ `36[x^2 + 4 - 4x + y^2] = pi^2[x^2 + 4 + 4x + y^2]`

⇒ 36x2 + 144 – 144x + 36y2 = π2x2 + 4π2 + 4π2x + π2y2

⇒ (36 – π2)x2 + (36 – π2)y2 – (144 + 4π2)x + 144 – 4π2 = 0

इसलिए, यह एक वृत्त के समीकरणों का प्रतिनिधित्व करता है।

इसलिए, अगर `|(z - 2)/(z + 2)| = pi/6`, z का बिंदु पथ वृत्त है।

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  Is there an error in this question or solution?
Chapter 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - प्रश्नावली [Page 93]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
प्रश्नावली | Q 25. (ix) | Page 93

RELATED QUESTIONS

निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:

`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`


`(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` को मानक रूप में परिवर्तित कीजिए।


यदि `x  –  iy = sqrt((a-ib)/(c - id))` , तो सिद्ध कीजिए की `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`


निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:

`(1+3i)/(1-2i)`


यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|`  का मान ज्ञात कीजिए।


समीकरण `|1-i|^x = 2^x`  के शून्येत्तर पूर्णांक मूलों की संख्या ज्ञात कीजिए।


यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2


यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)


वे बिंदु निर्धारित कीजिए, जिनके लिए 3 < |z| < 4


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।


z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?


1 + i2 + i4 + i6 + ... + i2n है: 


सम्मिश्र संख्याओं z, –iz और z + iz द्वारा सम्मिश्र तल में बनाये गये त्रिभुज का क्षेत्रफल है।


समीकरण |z + 1 - i| = |z - 1 + i| निरूपित करता है एक 


समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है


यदि `(1 + i)^2/(2 - i)` = x + iy, तो x + y ज्ञात कीजिए।


यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।


संख्या `(1 - i)^3/(1 - i^3)` ______ के बराबर है।


श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

एक शून्येत्तर सम्मिश्र संख्या का −i से गुणन उस सम्मिश्र संख्या द्वारा निरूपित बिंदु का मूल बिंदु के परित वामावर्त दिशा में एक समकोण पर घूर्णन कर देता है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है।


यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?


किन्हीं दो सम्मिश्र संख्याओं z1 तथा z2 के लिए, निम्नलिखित में से कौन सही है?


मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि


प्रतिबंध `|(i + z)/(i - z)| = 1` को संतुष्ट करने वाली सम्मिश्र संख्या स्थित होगी:


यदि z एक सम्मिश्र संख्या है, तो


θ का वह वास्तविक मान, जिसके लिए `(1 + i cos theta)/(1 - 2i cos theta)` एक वास्तविक संख्या है, निम्नलिखित में से कौन सा है:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×