English

1 + i2 + i4 + i6 + ... + i2n है: - Mathematics (गणित)

Advertisements
Advertisements

Question

1 + i2 + i4 + i6 + ... + i2n है: 

Options

  • धनात्मक

  • ऋणात्मक

  • 0

  • इसका मान नहीं निकाला जा सकता

MCQ

Solution

इसका मान नहीं निकाला जा सकता

स्पष्टीकरण:

1 + i2 + i4 + i6 + ... + i2n = 1 – 1 + 1 – 1 + ... (–1)n

इसका मान तब तक नहीं निकाला जा सकता, जब तक कि n का ज्ञान न हो।

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  Is there an error in this question or solution?
Chapter 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - हल किए हुए उदाहरण [Page 89]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
हल किए हुए उदाहरण | Q 28 | Page 89

RELATED QUESTIONS

सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:

4 - 3i


निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:

`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

1 – i


किन्हीं दो सम्मिश्र संख्याओं z1 और z2 के लिए, सिद्ध कीजिए:

Re(z1z2) = Rez1 Rez2 – Imz1 Imz2


यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|`  का मान ज्ञात कीजिए।


यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2


वे बिंदु निर्धारित कीजिए, जिनके लिए 3 < |z| < 4


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

सम्मिश्र संख्या cosθ + isinθ, θ के किसी मान के लिए शून्य हो सकती है।


वह कौन-सा न्यूनतम धनात्मक पूर्णांक n हैं, जिसके लिए (1 + i)2n = (1 – i)2n?


1 - i के कोणांक का मुख्य मान क्या है?


z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?


सम्मिश्र संख्याओं z, –iz और z + iz द्वारा सम्मिश्र तल में बनाये गये त्रिभुज का क्षेत्रफल है।


एक धनात्मक पूर्णांक n के लिए, `(1−i)^n(1−1/i)^n` का मान ज्ञात कीजिए।


यदि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, तो (x, y) ज्ञात कीजिए।


यदि (1 + i)z = `(1 - i)barz` है, तो दर्शाइए कि z = `-ibarz`


समीकरण |z| = z + 1 + 2i को हल कीजिए।


किन्हीं दो सम्मिश्र संख्याओं z1, z2 और किन्हीं वास्तविक संख्याओं a, b, के लिए, |az1 – bz2|2 + |bz1 + az2|2 = ______


`sqrt(-25) xx sqrt(-9)` का मान ______ है।


संख्या `(1 - i)^3/(1 - i^3)` ______ के बराबर है।


यदि |z + 4| ≤ 3, तो |z + 1| के अधिकतम और न्यूनतम मान ______ एवं ______ हैं।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

किसी भी सम्मिश्र संख्या z के लिए, |z| + |z – 1| का कम से कम मान 1 है।


α का वह वास्तविक मान, जिसके लिए व्यंजक `(1 - i sin alpha)/(1 + 2i sin alpha)` शुद्धत: वास्तविक है, निम्नलिखित में से कौन सा है:

मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि


प्रतिबंध `|(i + z)/(i - z)| = 1` को संतुष्ट करने वाली सम्मिश्र संख्या स्थित होगी:


यदि z एक सम्मिश्र संख्या है, तो


यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×