Advertisements
Advertisements
Question
समीकरण |z| = z + 1 + 2i को हल कीजिए।
Solution
टिप्पणी दि गई है कि |z| = z + 1 + 2i
मान लीजिए z = x + iy और इसलिए, |z| = z + 1 + 2i .........(i)
समीकरण (i) के दोनों ओर वर्ग कीजिए,
|z|2 = |z + 1|2 + 4i2 + 4(z + 1)i
⇒ |z|2 = |z|2 + 1 + 2z – 4 + 4(z + 1)i
⇒ 0 = – 3 + 2z + 4(z + 1)i
⇒ 3 – 2z – 4(z + 1)i = 0 ...........(ii)
समीकरण (ii) हल करें।
⇒ 3 – 2(x + yi) – 4[x + yi + 1]i = 0
⇒ 3 – 2x – 2yi – 4xi – 4yi2 – 4i = 0
⇒ 3 – 2x + 4y – 2yi – 4i – 4xi = 0
⇒ (3 – 2x + 4y) – i(2y + 4x + 4) = 0
समीकरण लिखें:
⇒ 3 – 2x + 4y = 0 ⇒ 2x – 4y = 3 .....(iii)
⇒ 4x + 2y + 4 = 0 ⇒ 2x + y = –2 .....(iv)
समीकरण (iii) और (iv) हल करें।
y = –1 and x = `-1/2`
z = x + yi = `(- 1/2 - i)` मान है।
APPEARS IN
RELATED QUESTIONS
सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:
- i
निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:
`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
-1 + i
किन्हीं दो सम्मिश्र संख्याओं z1 और z2 के लिए, सिद्ध कीजिए:
Re(z1z2) = Rez1 Rez2 – Imz1 Imz2
यदि `x – iy = sqrt((a-ib)/(c - id))` , तो सिद्ध कीजिए की `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2
यदि `((1+i)/(1-i))^m` = 1, तो m का न्यूनतम पूर्णांक मान ज्ञात कीजिए।
'a' का वास्तविक मान जिसके लिए 3i3 – 2ai2 + (1 – a)i + 5 वास्तविक है ______ होगा।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
एक शून्येतर सम्मिश्र संख्या को i से गुणा करने पर, वह उसे वामावर्त दिशा में एक समकोण पर घुमा देता है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
सम्मिश्र संख्या cosθ + isinθ, θ के किसी मान के लिए शून्य हो सकती है।
स्तंभ A और स्तंभ B के कथनों का सही मिलान कीजिए:
स्तंभ A | स्तंभ B |
(a) 1 + i2 + i4 + i6 + ... i20 का मान है | (i) शुद्धत: काल्पनिक सम्मिश्र संख्या |
(b) `i^(-1097)` का मान है | (ii) शुद्धत: वास्तविक सम्मिश्र संख्या |
(c) 1 + i का संयुग्मी किस चतुर्थांश में स्थित है | (iii) द्वितीय चतुर्थांश |
(d) `(1 + 2i)/(1 - i)` किस चतुर्थांश में स्थित है | (iv) चौथा चतुर्थांश |
(e) यदि a, b, c ∈ R और b2 - 4ac < 0 तब समीकरण ax2 + bx + c = 0 के मूल अवास्तविक एवं सम्मिश्र हैं | (v) संयुग्मी युग्मों में घटित नहीं हो सकते हैं |
(f) यदि a, b, c ∈ R और b2 – 4ac > 0 एवं b2 – 4ac एक पूर्ण वर्ग है, तो समीकरण ax2 + bx + c = 0 के मूल हैं | (vi) संयुग्मी युग्मों में घटित हो सकते हैं |
यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:
समीकरण |z + 1 - i| = |z - 1 + i| निरूपित करता है एक
एक धनात्मक पूर्णांक n के लिए, `(1−i)^n(1−1/i)^n` का मान ज्ञात कीजिए।
यदि `(1 + i)^2/(2 - i)` = x + iy, तो x + y ज्ञात कीजिए।
यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`
किन्हीं दो सम्मिश्र संख्याओं z1, z2 और किन्हीं वास्तविक संख्याओं a, b, के लिए, |az1 – bz2|2 + |bz1 + az2|2 = ______
`sqrt(-25) xx sqrt(-9)` का मान ______ है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
|z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है।
यदि `|(z - 5i)/(z + 5i)|` = 1, तो z कहाँ स्थित है?
मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि
प्रतिबंध `|(i + z)/(i - z)| = 1` को संतुष्ट करने वाली सम्मिश्र संख्या स्थित होगी:
θ का वह वास्तविक मान, जिसके लिए `(1 + i cos theta)/(1 - 2i cos theta)` एक वास्तविक संख्या है, निम्नलिखित में से कौन सा है:
यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है