Advertisements
Advertisements
Question
यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`
Solution
पता है की |z1| = |z2| = ... = |zn| = 1
⇒ |z1|2 = |z2|2 = ... = |zn|2 = 1 ......(i)
⇒ `z_1 barz_1 = z_2 barz_2 = ... = z_n barz_n` = 1 .....`[because zbarz = |z|^2]`
⇒ z1 = `1/barz_1, z_2 = 1/barz_2 = ... = z_n = 1/barz_n`
और,
|z1 + z2 + z3 + ... + zn| = `|(z_1barz_1)/barz_1 + (z_2barz_2)/barz_2 + (z_3barz_3)/barz_3 + ... + (z_nbarz_n)/barz_n|`
= `||z_1|^2/barz_1 + (|z_2|^2)/barz_2 + (|z_3|^2)/barz_3 + ... + (|z_n|^2)/barz_n|` ......`[zbarz = |z|^2]`
= `|1/barz_1 + 1/barz_2 + 1/barz_3 + ... + 1/barz_n|` ......[(i) का उपयोग करके]
= `|bar(1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n)|` .....`[because barz_1 + barz_2 = bar(z_1 + z_2)]`
= `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|` ....`[because |z| = |barz|]`
L.H.S. = R.H.S.
यह सिद्ध होता है कि
APPEARS IN
RELATED QUESTIONS
सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:
`sqrt5 + 3i`
किन्हीं दो सम्मिश्र संख्याओं z1 और z2 के लिए, सिद्ध कीजिए:
Re(z1z2) = Rez1 Rez2 – Imz1 Imz2
`(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` को मानक रूप में परिवर्तित कीजिए।
यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2
मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3
यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)
यदि z1, z2, z3 ऐसी सम्मिश्र संख्याएँ हैं कि `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, तो |z1 + z2 + z3| का मान ज्ञात कीजिए।
यदि (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy तो 5.8.13 ... (4 + n2) = ______
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
एक शून्येतर सम्मिश्र संख्या को i से गुणा करने पर, वह उसे वामावर्त दिशा में एक समकोण पर घुमा देता है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
यदि n एक धनात्मक पूर्णाक है, तो in + (i)n+1 + (i)n+2 + (i)n+3 का मान शून्य है।
1 + i2 + i4 + i6 + ... + i2n है:
समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है
`sum_(n = 1)^13 (i^n + i^(n + 1))` का मान ज्ञात कीजिए, जहाँ n ∈ N
यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।
यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।
यदि `(z - 1)/(z + 1)` एक शुद्धत: काल्पनिक संख्या है (z ≠ −1), तो |z| का मान ज्ञात कीजिए।
संख्या `(1 - i)^3/(1 - i^3)` ______ के बराबर है।
यदि z1 और z2 ऐसी सम्मिश्र संख्याएँ हैं कि z1 + z2 एक वास्तविक संख्या है, तो z2 = ______
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
किसी भी सम्मिश्र संख्या z के लिए, |z| + |z – 1| का कम से कम मान 1 है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
|z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है।
यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?
मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि
यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है