English

संख्या (1-i)31-i3 ______ के बराबर है। - Mathematics (गणित)

Advertisements
Advertisements

Question

संख्या `(1 - i)^3/(1 - i^3)` ______ के बराबर है।

Fill in the Blanks

Solution

संख्या `(1 - i)^3/(1 - i^3)` 2 के बराबर है।

स्पष्टीकरण:

सरलीकृत करे `(1 - i)^3/(1 - i^3)`

= `(1 - i)^3/((1 - i)(1 + i + i^2))`

= `(1 - i)^2/((1 + i - 1))`

= `(1 + i^2 - 2i)/i`

= `(1 - 1 - 2i)/i`

आगे हल करें।

= `(-2i)/i`

= –2

इसलिए `(1 - i)^3/(1 - i^3)` की संख्या −2 के बराबर है।

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  Is there an error in this question or solution?
Chapter 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - प्रश्नावली [Page 93]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
प्रश्नावली | Q 25. (iii) | Page 93

RELATED QUESTIONS

सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:

`sqrt5  + 3i`


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

1 – i


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

-1 + i


यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|`  का मान ज्ञात कीजिए।


समीकरण `|1-i|^x = 2^x`  के शून्येत्तर पूर्णांक मूलों की संख्या ज्ञात कीजिए।


यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2


मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3


यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)


`(-sqrt-1)^{4n  - 3}` का मान ______ है, जहाँ n ∈ N


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

एक शून्येतर सम्मिश्र संख्या को i से गुणा करने पर, वह उसे वामावर्त दिशा में एक समकोण पर घुमा देता है।


`(i^(4n + 1) -i^(4n - 1))/2` का क्या मान है?


1 + i2 + i4 + i6 + ... + i2n है: 


सम्मिश्र संख्याओं z, –iz और z + iz द्वारा सम्मिश्र तल में बनाये गये त्रिभुज का क्षेत्रफल है।


समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है


यदि `((1 - i)/(1 + i))^100` = a + ib है, तो (a, b) ज्ञात कीजिए।


यदि (1 + i)z = `(1 - i)barz` है, तो दर्शाइए कि z = `-ibarz`


यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।


समीकरण |z| = z + 1 + 2i को हल कीजिए।


श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है।


यदि z1 और z2 ऐसी सम्मिश्र संख्याएँ हैं कि z1 + z2 एक वास्तविक संख्या है, तो z2 = ______


यदि |z + 4| ≤ 3, तो |z + 1| के अधिकतम और न्यूनतम मान ______ एवं ______ हैं।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

किसी भी सम्मिश्र संख्या z के लिए, |z| + |z – 1| का कम से कम मान 1 है।


मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि


यदि a + ib = c + id, तो


प्रतिबंध `|(i + z)/(i - z)| = 1` को संतुष्ट करने वाली सम्मिश्र संख्या स्थित होगी:


यदि z एक सम्मिश्र संख्या है, तो


यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×