Advertisements
Advertisements
Question
यदि `((1 - i)/(1 + i))^100` = a + ib है, तो (a, b) ज्ञात कीजिए।
Solution
टिप्पणी दि गई है कि `((1 - i)/(1 + i))^100` = a + bi
⇒ `((1 - i)/(1 + i) xx (1 - i)/(1 - i))^100` = a + bi
⇒ `((1 + i^2 - 2i)/(1 - i^2))^100` = a + bi ...(i)
समीकरण (i) हल करें।
⇒ `((1 - 1 - 2i)/(1 + 1))^100` = a + bi
⇒ `((-2i)/2)^100` = a + bi
⇒ (– i)100 = a + bi
⇒ i100 = a + bi ...........(ii)
समीकरण (ii) हल करें।
⇒ (i4)25 = a + bi
⇒ (1)25 = a + bi
⇒ 1 = a + bi
⇒ 1 + 0i = a + bi
वास्तविक और काल्पनिक भागों की तुलना करें,
a = 1 और b = 0
इसलिए (a, b) का मान (1, 0) है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:
`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
1 – i
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
-1 + i
निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:
`(1+7i)/(2-i)^2`
निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:
`(1+3i)/(1-2i)`
यदि `((1+i)/(1-i))^m` = 1, तो m का न्यूनतम पूर्णांक मान ज्ञात कीजिए।
यदि z1, z2, z3 ऐसी सम्मिश्र संख्याएँ हैं कि `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, तो |z1 + z2 + z3| का मान ज्ञात कीजिए।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
यदि n एक धनात्मक पूर्णाक है, तो in + (i)n+1 + (i)n+2 + (i)n+3 का मान शून्य है।
`(i^(4n + 1) -i^(4n - 1))/2` का क्या मान है?
z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?
यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:
यदि `(1 + i)^2/(2 - i)` = x + iy, तो x + y ज्ञात कीजिए।
यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।
यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`
`sqrt(-25) xx sqrt(-9)` का मान ______ है।
यदि |z + 4| ≤ 3, तो |z + 1| के अधिकतम और न्यूनतम मान ______ एवं ______ हैं।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
किसी भी सम्मिश्र संख्या z के लिए, |z| + |z – 1| का कम से कम मान 1 है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है।
यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?
यदि a + ib = c + id, तो
यदि z एक सम्मिश्र संख्या है, तो
θ का वह वास्तविक मान, जिसके लिए `(1 + i cos theta)/(1 - 2i cos theta)` एक वास्तविक संख्या है, निम्नलिखित में से कौन सा है: