Advertisements
Advertisements
Question
सम्मिश्र संख्याओं z, –iz और z + iz द्वारा सम्मिश्र तल में बनाये गये त्रिभुज का क्षेत्रफल है।
Options
|z|2
`|barz|^2`
`|z|^2/2`
इनमें से कोई नहीं
Solution
`underlinebb(|z|^2/2)`
स्पष्टीकरण:
मान लीजिए कि z = x + iy तब, –iz = y – ix
अतः z + iz = (x – y) + i(x + y)
त्रिभुज का वांछित क्षेत्रफल = `1/2(x^2 + y^2) = |z|^2/2`
APPEARS IN
RELATED QUESTIONS
सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:
4 - 3i
निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:
`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
-1 + i
किन्हीं दो सम्मिश्र संख्याओं z1 और z2 के लिए, सिद्ध कीजिए:
Re(z1z2) = Rez1 Rez2 – Imz1 Imz2
`(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` को मानक रूप में परिवर्तित कीजिए।
यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)
यदि z1, z2, z3 ऐसी सम्मिश्र संख्याएँ हैं कि `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, तो |z1 + z2 + z3| का मान ज्ञात कीजिए।
वे बिंदु निर्धारित कीजिए, जिनके लिए 3 < |z| < 4
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।
वह कौन-सा न्यूनतम धनात्मक पूर्णांक n हैं, जिसके लिए (1 + i)2n = (1 – i)2n?
समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है
एक धनात्मक पूर्णांक n के लिए, `(1−i)^n(1−1/i)^n` का मान ज्ञात कीजिए।
`sum_(n = 1)^13 (i^n + i^(n + 1))` का मान ज्ञात कीजिए, जहाँ n ∈ N
यदि `(1 + i)^2/(2 - i)` = x + iy, तो x + y ज्ञात कीजिए।
यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।
यदि |z1| = 1(z1 ≠ –1) और z2 = `(z_1 - 1)/(z_1 + 1)`, तो दर्शाइए कि z2 का वास्तविक भाग शून्य है।
यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`
समीकरण `z + sqrt(2) |(z + 1)| + i` = 0 को संतुष्ट करने वाली सम्मिश्र संख्या ज्ञात कीजिए।
`sqrt(-25) xx sqrt(-9)` का मान ______ है।
संख्या `(1 - i)^3/(1 - i^3)` ______ के बराबर है।
यदि |z + 4| ≤ 3, तो |z + 1| के अधिकतम और न्यूनतम मान ______ एवं ______ हैं।
यदि `|(z - 2)/(z + 2)| = pi/6` है, तो z का बिंदु पथ ______ है।
यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?
यदि `((1 + i)/(1 - i))^x` = 1, तो
x का एक वास्तविक मान समीकरण `((3 - 4ix)/(3 + 4ix))` = α − iβ(α, β ∈ R) को संतुष्ट करता है, यदि α2 + β2 = ______
किन्हीं दो सम्मिश्र संख्याओं z1 तथा z2 के लिए, निम्नलिखित में से कौन सही है?
यदि सम्मिश्र संख्या 2 − i से निरूपित बिंदु को मूलबिंदु के प्रति दक्षिणावर्त दिशा में एक कोण `π/2` पर घुमाया जाए, तो उस बिंदु की नयी स्थिति होगी
मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि
यदि a + ib = c + id, तो