English

समीकरण z+2|(z+1)|+i = 0 को संतुष्ट करने वाली सम्मिश्र संख्या ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

समीकरण `z + sqrt(2) |(z + 1)| + i` = 0 को संतुष्ट करने वाली सम्मिश्र संख्या ज्ञात कीजिए।

Sum

Solution

पता है की, z + `sqrt(2) |(z + 1)| + i` = 0 ....(1)

रखीए, z = x + yi

∴ `(x + yi) + sqrt(2)|(x + yi + 1)| + i` = 0

⇒ `x + (y + 1)i + sqrt(2)|(x + 1) + yi|` = 0

⇒ `x + (y + 1)i + sqrt(2) sqrt((x + 1)^2 + y^2)` = 0

⇒ `x + (y + 1)i + sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` = 0 + 0i

⇒ `x + sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` = 0, y + 1 = 0

⇒ x = `- sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` and y = –1

⇒ x2 = 2(x2 + 2x + 1 + y2)

⇒ x2 = 2x2 + 4x + 2 + 2y2

⇒ x2 + 4x + 2 + 2y2 = 0

⇒ x2 + 4x + 2 + 2(–1)2 = 0  .....[∵ y = –1]

⇒ x2 + 4x + 4 = 0

⇒ (x + 2)2 = 0

⇒ x + 2 = 0

⇒ x = –2

इस तरह, z = x + yi = –2 – i

यह सिद्ध होता है कि  `z + sqrt(2) |(z + 1)| + i` = 0

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  Is there an error in this question or solution?
Chapter 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - प्रश्नावली [Page 92]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
प्रश्नावली | Q 22. | Page 92

RELATED QUESTIONS

सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:

4 - 3i


सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:

- i


निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:

`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

1 – i


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

-1 + i


किन्हीं दो सम्मिश्र संख्याओं z1 और z2 के लिए, सिद्ध कीजिए:

Re(z1z2) = Rez1 Rez2 – Imz1 Imz2


मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3


यदि (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy तो 5.8.13 ... (4 + n2) = ______


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

सम्मिश्र संख्या cosθ + isinθ, θ के किसी मान के लिए शून्य हो सकती है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

यदि n एक धनात्मक पूर्णाक है, तो in + (i)n+1 + (i)n+2 + (i)n+3 का मान शून्य है।


स्तंभ A और स्तंभ B के कथनों का सही मिलान कीजिए:

स्तंभ A स्तंभ B
(a) 1 + i2 + i4 + i6 + ... i20 का मान है (i) शुद्धत: काल्पनिक सम्मिश्र संख्या
(b) `i^(-1097)` का मान है (ii) शुद्धत: वास्तविक सम्मिश्र संख्या
(c) 1 + i का संयुग्मी किस चतुर्थांश में स्थित है (iii) द्वितीय चतुर्थांश
(d) `(1 + 2i)/(1 - i)` किस चतुर्थांश में स्थित है (iv) चौथा चतुर्थांश
(e) यदि a, b, c ∈ R और b2 - 4ac < 0 तब समीकरण ax2 + bx + c = 0 के मूल अवास्तविक एवं सम्मिश्र हैं (v) संयुग्मी युग्मों में घटित नहीं हो सकते हैं
(f) यदि a, b, c ∈ R और b2 – 4ac > 0 एवं b2 – 4ac एक पूर्ण वर्ग है, तो समीकरण ax2 + bx + c = 0 के मूल हैं (vi) संयुग्मी युग्मों में घटित हो सकते हैं

1 + i2 + i4 + i6 + ... + i2n है: 


समीकरण |z + 1 - i| = |z - 1 + i| निरूपित करता है एक 


समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है


यदि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, तो (x, y) ज्ञात कीजिए।


यदि `((1 - i)/(1 + i))^100` = a + ib है, तो (a, b) ज्ञात कीजिए।


यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।


यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।


यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`


किन्हीं दो सम्मिश्र संख्याओं z1, z2 और किन्हीं वास्तविक संख्याओं a, b, के लिए, |az1 – bz2|2 + |bz1 + az2|2 = ______


श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है।


(z + 3) (`overlinez` + 3) का मान निम्नलिखित में से किसके समतुल्य है


x का एक वास्तविक मान समीकरण `((3 - 4ix)/(3 + 4ix))` = α − iβ(α, β ∈ R) को संतुष्ट करता है, यदि α2 + β2 = ______


θ का वह वास्तविक मान, जिसके लिए `(1 + i cos theta)/(1 - 2i cos theta)` एक वास्तविक संख्या है, निम्नलिखित में से कौन सा है:


यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×