English
Karnataka Board PUCPUC Science Class 11

By Some Mechanism, the Separation Between the Slits S3 and S4 Can Be Changed. the Intensity is Measured at the Point P, Which is at the Common Perpendicular Bisector of S1s2 and S2s4. - Physics

Advertisements
Advertisements

Question

Consider the arrangement shown in the figure. By some mechanism, the separation between the slits S3 and S4 can be changed. The intensity is measured at the point P, which is at the common perpendicular bisector of S1S2 and S2S4. When \[z = \frac{D\lambda}{2d},\] the intensity measured at P is I. Find the intensity when z is equal to

(a) \[\frac{D\lambda}{d}\]

(b) \[\frac{3D\lambda}{2d}\]  and

(c) \[\frac{2D\lambda}{d}\]

Sum

Solution

Given:-

Fours slits S1, S2, S3 and S4.

The separation between slits S3 and S4 can be changed.

Point P is the common perpendicular bisector of S1S2 and S3S4.

(a) For \[z = \frac{\lambda D}{d}\]

The position of the slits from the central point of the first screen is given by \[y =  {OS}_3  =  {OS}_4  = \frac{z}{2} = \frac{\lambda D}{2d}\]

The corresponding path difference in wave fronts reaching S3 is given by \[∆ x = \frac{yd}{D} = \frac{\lambda D}{2d} \times \frac{d}{D} = \frac{\lambda}{2}\]

Similarly at S4, path difference, \[∆ x = \frac{yd}{D} = \frac{\lambda D}{2d} \times \frac{d}{D} = \frac{\lambda}{2}\]

i.e. dark fringes are formed at S3 and S4.

So, the intensity of light at S3 and S4 is zero. Hence, the intensity at P is also zero.

(b) For \[z = \frac{3\lambda D}{2d}\]

The position of the slits from the central point of the first screen is given by \[y =  {OS}_3  =  {OS}_4  = \frac{z}{2} = \frac{3\lambda D}{4d}\]

The corresponding path difference in wave fronts reaching S3 is given by \[∆ x = \frac{yd}{D} = \frac{3\lambda D}{4d} \times \frac{d}{D} = \frac{3\lambda}{4}\]

Similarly at S4, path difference,

\[∆ x = \frac{yd}{D} = \frac{3\lambda D}{4d} \times \frac{d}{D} = \frac{3\lambda}{4}\]

Hence, the intensity at P is I.

(c) For \[z = \frac{2\lambda D}{d}\]

The position of the slits from the central point of the first screen is given by \[y =  {OS}_3  =  {OS}_4  = \frac{z}{2} = \frac{2\lambda D}{2d}\]

The corresponding path difference in wave fronts reaching S3 is given by \[∆ x = \frac{yd}{D} = \frac{2\lambda D}{2d} \times \frac{d}{D} = \lambda\]

Similarly at S4, path difference, \[∆ x = \frac{yd}{D} = \frac{2\lambda D}{2d} \times \frac{d}{D} = \lambda\]

Hence, the intensity at P is 2I.

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Light Waves - Exercise [Page 383]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 17 Light Waves
Exercise | Q 34 | Page 383

RELATED QUESTIONS

(i) In Young's double-slit experiment, deduce the condition for (a) constructive and (b) destructive interferences at a point on the screen. Draw a graph showing variation of intensity in the interference pattern against position 'x' on the screen.

(b) Compare the interference pattern observed in Young's double-slit experiment with single-slit diffraction pattern, pointing out three distinguishing features.


In Young' s experiment the ratio of intensity at the maxima and minima . in the interference pattern is 36 : 16. What is the ratio of the widths of the two slits?


Show that the angular width of the first diffraction fringe is half that of the central fringe.


In Young's double slit experiment, using monochromatic light of wavelength λ, the intensity of light at a point on the screen where path difference is λ, is K units. Find out the intensity of light at a point where path difference is `λ/3`.


In a double-slit experiment the angular width of a fringe is found to be 0.2° on a screen placed 1 m away. The wavelength of light used is 600 nm. What will be the angular width of the fringe if the entire experimental apparatus is immersed in water? Take refractive index of water to be 4/3.


In Young’s experiment, the ratio of intensity at the maxima and minima in an interference
pattern is 36 : 9. What will be the ratio of the intensities of two interfering waves?


Write three characteristic features to distinguish between the interference fringes in Young's double slit experiment and the diffraction pattern obtained due to a narrow single slit.


If the separation between the slits in a Young's double slit experiment is increased, what happens to the fringe-width? If the separation is increased too much, will the fringe pattern remain detectable?


White light is used in a Young's double slit experiment. Find the minimum order of the violet fringe \[\left( \lambda = 400\text{ nm} \right)\] which overlaps with a red fringe \[\left( \lambda = 700\text{ nm} \right).\]


A mica strip and a polystyrene strip are fitted on the two slits of a double slit apparatus. The thickness of the strips is 0.50 mm and the separation between the slits is 0.12 cm. The refractive index of mica and polystyrene are 1.58 and 1.55, respectively, for the light of wavelength 590 nm which is used in the experiment. The interference is observed on a screen at a distance one metre away. (a) What would be the fringe-width? (b) At what distance from the centre will the first maximum be located?


In Young's double-slit experiment, the two slits are separated by a distance of 1.5 mm, and the screen is placed 1 m away from the plane of the slits. A beam of light consisting of two wavelengths of 650 nm and 520 nm is used to obtain interference fringes.
Find the distance of the third bright fringe for λ = 520 nm on the screen from the central maximum.


In Young’s double slit experiment, what should be the phase difference between the two overlapping waves to obtain 5th dark band/fringe on the screen?


An unpolarised beam of intensity 2a2 passes through a thin polaroid. Assuming zero absorption in the polaroid, the intensity of emergent plane polarised light will be


A projectile can have the same range R for two angles of projection. If t1 and t2 be the times of flight in two cases, then what is the product of two times of flight?


ASSERTION (A): In an interference pattern observed in Young's double slit experiment, if the separation (d) between coherent sources as well as the distance (D) of the screen from the coherent sources both are reduced to 1/3rd, then new fringe width remains the same.

REASON (R): Fringe width is proportional to (d/D).


A slit of width 0.6 mm is illuminated by a beam of light consisting of two wavelengths 600 nm and 480 nm. The diffraction pattern is observed on a screen 1.0 m from the slit. Find:

  1. The distance of the second bright fringe from the central maximum pertaining to the light of 600 nm.
  2. The least distance from the central maximum at which bright fringes due to both wavelengths coincide.

How will the interference pattern in Young's double-slit experiment be affected if the source slit is moved away from the plane of the slits?


Interference fringes are observed on a screen by illuminating two thin slits 1 mm apart with a light source (λ = 632.8 nm). The distance between the screen and the slits is 100 cm. If a bright fringe is observed on a screen at distance of 1.27 mm from the central bright fringe, then the path difference between the waves, which are reaching this point from the slits is close to :


Monochromatic green light of wavelength 5 × 10-7 m illuminates a pair of slits 1 mm apart. The separation of bright lines in the interference pattern formed on a screen 2 m away is ______.


In Young's double slit experiment, show that:

`β = (λ"D")/"d"`

Where the terms have their usual meaning.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×