English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Choose the correct alternative: The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7 = 0 is - Mathematics

Advertisements
Advertisements

Question

Choose the correct alternative:

The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7 = 0 is

Options

  • `sqrt(7)/(2sqrt(2))`

  • `7/2`

  • `sqrt(7)/2`

  • `7/(2sqrt(2))`

MCQ

Solution

`sqrt(7)/(2sqrt(2))`

shaalaa.com
Different Forms of Equation of a Plane
  Is there an error in this question or solution?
Chapter 6: Applications of Vector Algebra - Exercise 6.10 [Page 278]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 6 Applications of Vector Algebra
Exercise 6.10 | Q 20 | Page 278

RELATED QUESTIONS

Find the direction cosines of the normal to the plane 12x + 3y – 4z = 65. Also find the non-parametric form of vector equation of a plane and the length of the perpendicular to the plane from the origin


Find the vector and Cartesian equation of the plane passing through the point with position vector `2hat"i" + 6hat"j" + 3hat"k"` and normal to the vector `hat"i" + 3hat"j" + 5hat"k"`


A plane passes through the point (− 1, 1, 2) and the normal to the plane of magnitude `3sqrt(3)` makes equal acute angles with the coordinate axes. Find the equation of the plane


Find the non-parametric form of vector equation and Cartesian equation of the plane passing through the point (2, 3, 6) and parallel to thestraight lines `(x - 1)/2 = (y + 1)/3 = (x - 3)/1` and `(x + 3)/2 = (y - 3)/(-5) = (z + 1)/(-3)`


Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points (2, 2, 1), (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 9


Find the parametric form of vector equation and Cartesian equations of the plane passing through the points (2, 2, 1), (1, – 2, 3) and parallel to the straight line passing through the points (2, 1, – 3) and (– 1, 5, – 8)


Find the non-parametric form of vector equation and cartesian equation of the plane passing through the point (1, − 2, 4) and perpendicular to the plane x + 2y − 3z = 11 and parallel to the line `(x + 7)/3 = (y + 3)/(-1) = z/1`


Find the parametric vector, non-parametric vector and Cartesian form of the equation of the plane passing through the point (3, 6, – 2), (– 1, – 2, 6) and (6, 4, – 2)


If the straight lines `(x - 1)/2 = (y + 1)/lambda = z/2` and `(x + 1)/5 = (y + 1)/2 = z/lambda` are coplanar, find λ and equations of the planes containing these two lines


Choose the correct alternative:

If `vec"a", vec"b", vec"c"` are three non-coplanar vectors such that `vec"a" xx (vec"b" xx vec"c") = (vec"b" + vec"c")/sqrt(2)` then the angle between `vec"a"` and `vec"b"` is


Choose the correct alternative:

Consider the vectors  `vec"a", vec"b", vec"c", vec"d"` such that `(vec"a" xx vec"b") xx (vec"c" xx vec"d") = vec0`. Let P1 and P2 be the planes determined by the pairs of vectors `vec"a", vec"b"` and `vec'c", vec"d"` respectively. Then the angle between P1 and P2 is


Choose the correct alternative:

If the line `(x  - )/3 = (y - 1)/(-5) = (x + 2)/2` lies in the plane x + 3y – αz + ß = 0 then (α + ß) is


Let d be the distance between the foot of perpendiculars of the points P(1, 2, –1) and Q(2, –1, 3) on the plane –x + y + z = 1. Then d2 is equal to ______.


The equation of the plane passing through the point (1, 2, –3) and perpendicular to the planes 3x + y – 2z = 5 and 2x – 5y – z = 7, is ______.


The plane passing through the points (1, 2, 1), (2, 1, 2) and parallel to the line, 2x = 3y, z = 1 also passes through the point ______.


A point moves in such a way that sum of squares of its distances from the co-ordinate axis is 36, then distance of then given point from origin are ______.


Consider a plane 2x + y – 3z = 5 and the point P(–1, 3, 2). A line L has the equation `(x - 2)/3 = (y - 1)/2 = (z - 3)/4`. The co-ordinates of a point Q of the line L such that `vec(PQ)` is parallel to the given plane are (α, β, γ), then the product βγ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×