English

Choose the correct option: The graph shows variation of displacement of a particle performing S.H.M. with time t. Which of the following statements is correct from the graph? - Physics

Advertisements
Advertisements

Question

Choose the correct option:

The graph shows variation of displacement of a particle performing S.H.M. with time t. Which of the following statements is correct from the graph?

Options

  • The acceleration is maximum at time T.

  • The force is maximum at time `(3T)/4`.

  • The velocity is zero at time `T/2`.

  • The kinetic energy is equal to total energy at a time `T/4`.

MCQ

Solution

The force is maximum at a time `(3T)/4`.

Explanation:

Express the relation of force. F = ma

Here, m is the mass of the particle.

a is the acceleration. 

Since acceleration is maximum at extreme positions, Force is also maximum at extreme positions. At time `(3T)/4` particle is at extreme position. Therefore, at `(3T)/4` force is maximum.

shaalaa.com
Acceleration (a), Velocity (v) and Displacement (x) of S.H.M.
  Is there an error in this question or solution?
Chapter 5: Oscillations - Exercises [Page 129]

APPEARS IN

Balbharati Physics [English] 12 Standard HSC Maharashtra State Board
Chapter 5 Oscillations
Exercises | Q 1.5 | Page 129

RELATED QUESTIONS

Find the change in length of a second’s pendulum, if the acceleration due to gravity at the place changes from 9.75 m/s2 to 9.8 m/s2.


A particle is performing simple harmonic motion with amplitude A and angular velocity ω. The ratio of maximum velocity to maximum acceleration is ______.


Acceleration of a particle executing S.H.M. at its mean position.


Using the differential equation of linear S.H.M., obtain an expression for acceleration, velocity, and displacement of simple harmonic motion. 


The displacement of a particle from its mean position (in metre) is given by, y = 0.2 sin(10 πt + 1.5π) cos(10 πt + 1.5π).

The motion of particle is ____________.


A wheel of M.I. 50 kg m2 starts rotating on applying a constant torque of 200 Nm. Its angular velocity after 2.5 second from the start is ______.


A particle is moving along a circular path of radius 6 m with a uniform speed of 8 m/s. The average acceleration when the particle completes one-half of the revolution is ______.


The relation between time and displacement for two particles is given by Y1 = 0.06 sin 27`pi` (0.04t + `phi_1`), y2 = 0.03sin 27`pi`(0.04t +  `phi_2`). The ratio of the intensity of the waves produced by the vibrations of the two particles will be ______.


The phase difference between the instantaneous velocity and acceleration of a particle executing S.H.M is ____________.


If 'α' and 'β' are the maximum velocity and maximum acceleration respectively, of a particle performing linear simple harmonic motion, then the path length of the particle is _______.


The displacement of a particle is 'y' = 2 sin `[(pit)/2 + phi]`, where 'y' is cm and 't' in second. What is the maximum acceleration of the particle executing simple harmonic motion? 

(Φ = phase difference)


The maximum speed of a particle in S.H.M. is 'V'. The average speed is ______ 


The length of the second's pendulum is decreased by 0.3 cm when it is shifted from place A to place B. If the acceleration due to gravity at place A is 981 cm/s2, the acceleration due to gravity at place B is ______ (Take π2 = 10)


A body is executing S.H.M. Its potential energy is E1 and E2 at displacements x and y respectively. The potential energy at displacement (x + y) is ______.


A simple pendulum of length 'L' is suspended from a roof of a trolley. A trolley moves in horizontal direction with an acceleration 'a'. What would be the period of oscillation of a simple pendulum?

(g is acceleration due to gravity)


A block of mass 16 kg moving with velocity 4 m/s on a frictionless surface compresses an ideal spring and comes to rest. If force constant of the spring is 100 N/m then how much will be the spring compressed?


The displacement of the particle performing S.H.M. is given by x = 4 sin πt, where x is in cm and t is in second. The time taken by the particle in second to move from the equilibrium position to the position of half the maximum displacement, is ______.

`[sin30^circ=cos60^circ=0.5, cos30^circ=sin60^circ=sqrt3/2]`


The displacements of two particles executing simple harmonic motion are represented as y1 = 2 sin (10t + θ) and y2 = 3 cos 10t. The phase difference between the velocities of these waves is ______.


A particle is performing SHM starting extreme position, graphical representation shows that between displacement and acceleration there is a phase difference of ______.


A particle performs linear SHM at a particular instant, velocity of the particle is 'u' and acceleration is a while at another instant velocity is 'v' and acceleration is 'β (0 < α < β). The distance between the two position is ______.


In figure, a particle is placed at the highest point A of a smooth sphere of radius r. It is given slight push and it leaves the sphere at B, at a depth h vertically below A, such that h is equal to ______.


A spring of force constant of 400 N/m is loaded with a mass of 0.25 kg. The amplitude of oscillations is 4 cm. When mass comes to the equilibrium position. Its velocity is ______.


The displacement of a particle of mass 3 g executing simple harmonic motion is given by Y = 3 sin (0.2 t) in SI units. The kinetic energy of the particle at a point which is at a distance equal to `1/3`​ of its amplitude from its mean position is ______.


A body of mass 0.5 kg travels in a straight line with velocity v = ax3/2 where a = 5 m–1/2s–1. The change in kinetic energy during its displacement from x = 0 to x = 2 m is ______.


Calculate the velocity of a particle performing S.H.M. after 1 second, if its displacement is given by x = `5sin((pit)/3)`m.


State the expressions for the displacement, velocity and acceleration draw performing linear SHM, starting from the positive extreme position. Hence, their graphs with respect to time.


State the expression for the total energy of SHM in terms of acceleration.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×