Advertisements
Advertisements
Question
Construct a ∆ABC such that AB = 5.5 cm, ∠C = 25° and the altitude from C to AB is 4 cm
Solution
Steps of construction:
1. Draw a line segment AB = 5.5 cm.
2. At A draw AE such that ∠BAE = 25°.
3. At A draw AF such that ∠EAF = 90°.
4. Draw the perpendicular bisector of AB which intersects AF at O and AB at G.
5. With O as centre and OB as radius draw a circle.
6. XY intersects AB at G. On XY, from G mark an arc at M. Such that GM = 4 cm.
7. Through M draw a line parallel to AB intersect the circle at C and D.
8. Join AC and BC.
9. ∆ABC is the required triangle.
APPEARS IN
RELATED QUESTIONS
In ΔABC, D and E are points on the sides AB and AC respectively. For the following case show that DE || BC
AB = 12 cm, AD = 8 cm, AE = 12 cm and AC = 18 cm
In ΔABC, D and E are points on the sides AB and AC respectively. For the following case show that DE || BC
AB = 5.6 cm, AD = 1.4 cm, AC = 7.2 cm and AE = 1.8 cm.
If PQ || BC and PR || CD prove that `"AR"/"AD" = "AQ"/"AB"`
If PQ || BC and PR || CD prove that `"QB"/"AQ" = "DR"/"AR"`
∠QPR = 90°, PS is its bisector. If ST ⊥ PR, prove that ST × (PQ + PR) = PQ × PR
ABCD is a quadrilateral in which AB = AD, the bisector of ∠BAC and ∠CAD intersect the sides BC and CD at the points E and F respectively. Prove that EF || BD.
Construct a ∆PQR in which the base PQ = 4.5 cm, ∠R = 35° and the median from R to RG is 6 cm.
Construct a ∆PQR in which QR = 5 cm, ∠P = 40° and the median PG from P to QR is 4.4 cm. Find the length of the altitude from P to QR.
Draw a triangle ABC of base BC = 5.6 cm, ∠A = 40° and the bisector of ∠A meets BC at D such that CD = 4 cm
ABC is a triangle in which AB = AC. Points D and E are points on the side AB and AC respectively such that AD = AE. Show that the points B, C, E and D lie on a same circle