Advertisements
Advertisements
Question
एक आलू दौड़ (potato race) में, प्रारंभिक स्थान पर एक बाल्टी रखी हुई है, जो पहले आलू से 5m की दूरी पर है, तथा अन्य आलुओं को एक सीधी रेखा में परस्पर 3m की दूरियों पर रखा गया है। इस रेखा पर 10 आलू रखे गए हैं (देखिए आकृति)।
प्रत्येक प्रतियोगी बाल्टी से चलना प्रारंभ करती है, निकटतम आलू को उठाती है, उसे लेकर वापस आकर दौड़कर बाल्टी में डालती है, दूसरा आलू उठाने के लिए वापस दौड़ती है, उसे उठाकर वापस बाल्टी में डालती है, और वह ऐसा तब तक करती रहती है, जब तक सभी आलू बाल्टी में न आ जाएँ। इसमें प्रतियोगी को कुल कितनी दूरी दौड़नी पड़ेगी?
[संकेत: पहले और दूसरे आलुओं को उठाकर बाल्टी में डालने तक दौड़ी गई दूरी = 2 × 5 + 2 × (5 + 3) है।]
Solution 1
आलू की दूरियाँ इस प्रकार हैं।
5, 8, 11, 14…
यह देखा जा सकता है कि ये दूरियाँ A.P. में हैं।
a = 5
d = 8 − 5
d = 3
`S_n = n/2 [2a+(n-1)d]`
`S_10=10/2[2(5)+(10-1)3]`
= 5 [10 + 9 × 3]
= 5(10 + 27)
= 5(37)
= 185
हर बार उसे बाल्टी में वापस भागना पड़ता है, इसलिए, प्रतियोगी को दौड़ने वाली कुल दूरी दोगुनी होगी।
इसलिए, प्रतियोगी द्वारा दौड़ी जाने वाली कुल दूरी = 2 × 185
= 370 m
वैकल्पिक रूप से,
बाल्टी से आलू की दूरी 5, 8, 11, 14,... है
आलू को इकट्ठा करने के लिए प्रतियोगी द्वारा दौड़ी गई दूरी आलू को रखे जाने की दूरी से दोगुनी है। इसलिए, दौड़ी जाने वाली दूरी हैं
10, 16, 22, 28, 34,...
a = 10
d = 16 − 10
d = 6
S10 =?
`S_10 = 10/2 [2xx10+(10-1)6]`
= 5 [20 + 54]
= 5 (74)
= 370
इसलिए, प्रतियोगी द्वारा दौड़ी जाने वाली कुल दूरी 370 मीटर होगी।
Solution 2
पहले आलू को उठाकर बाल्टी में डालने तक दौड़ी गई दूरी a1 = 2 × 5 = 10 m = a
दूसरे आलू को उठाकर बाल्टी में डालने तक दौड़ी गई दूरी a2 = 2 × (5 + 3) = 2 × 8 = 16 m
तीसरे आलू को उठाकर बाल्टी में डालने तक दौड़ी गई दूरी a3 = 2 × (8 + 3) = 2 × 11 = 22 m
इस प्रकार दौड़ी गई दूरियाँ क्रमशः 10 m, 16 m, 22 m, ……… एक AP का निर्माण करती हैं।
जहाँ a = 10 m, d = (16 m – 10 m) = 6 m एवं n = 10
चूँकि Sn = `"n"/2` [2a + (n – 1) × d]
⇒ S10 = `10/2` [2 × 10 + (10 – 1) × 6]
= 5 [20 + 54]
= 5 × 74
= 370 m
अतः प्रत्येक प्रतियोगी को कुल 370 m दूरी दौड़नी पड़ेगी।
APPEARS IN
RELATED QUESTIONS
नीचे दिए गए योगफल को ज्ञात कीजिए:
`7 + 10 1/2 + 14 + ... + 84`
एक A.P. में, a12 = 37 और d = 3 दिया है। a और S12 ज्ञात कीजिए।
एक A.P. में, a = 8, an = 62 और Sn = 210 दिया है। n और d ज्ञात कीजिए।
एक A.P. में, an = 4, d = 2 और Sn = -14 दिया है। n और a ज्ञात कीजिए।
एक A.P. में, l = 28, S = 144 और कुल 9 पद हैं। a ज्ञात कीजिए।
AP: 10, 6, 2,... के प्रथम 16 पदों का योग ______ है।
यदि Sn किसी AP के प्रथम n पदों का योग व्यक्त करता है, तो सिद्ध कीजिए कि S12 = 3(S8 – S4) है।
यदि किसी AP के प्रथम 6 पदों का योग 36 है तथा प्रथम 16 पदों का योग 256 है, तो उसके प्रथम 10 पदों का योग ज्ञात कीजिए।
AP: 8, 10, 12,..., 126 के अंतिम 10 पदों का योग ज्ञात कीजिए।
जसपाल सिंह अपने कुल 118000 रु के ऋण को मासिक किस्तों में, 1000 रु की पहली किस्त से प्रारंभ करते हुए, चुकाता है। यदि वह प्रति मास की किश्त 100 रु बढ़ाता जाता है, तो उसके द्वारा 30 वीं किस्त में कितनी राशि चुकाई जाएगी? 30 वीं किस्त के बाद उसको कितना ऋण चुकाना और शेष रहेगा?