English
Karnataka Board PUCPUC Science Class 11

Find the Dimensions of Magnetic Permeability μ 0 the Relevant Equation Are F = Q E , F = Q V B , and B = μ 0 I 2 π a ; Where F is Force, Q is Charge, V is Speed, I is Current, and a is Distance. - Physics

Advertisements
Advertisements

Question

Find the dimensions of magnetic permeability \[\mu_0\] 
The relevant equation are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]

where F is force, q is charge, v is speed, I is current, and a is distance.

Sum

Solution

 Magnetic permeability,
\[\mu_0 = \frac{B \times 2\pi r}{I}\]
\[\text{ Here,} \left[ B \right] = {\left[ {MT}^{- 2} A^{- 1} \right]}\text{ and } \left[ r \right] = {\left[ L \right]}\]
\[\text{So, dimension of magnetic permeability,} [ \mu_0 ] = \frac{\left[ {MT}^{- 2} A^{- 1} \right] \times \left[ L \right]}{\left[ A \right]} = \left[ {MLT}^{- 2} A^{- 2} \right]\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Introduction to Physics - Exercise [Page 10]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 1 Introduction to Physics
Exercise | Q 3.3 | Page 10

RELATED QUESTIONS

If two quantities have same dimensions, do they represent same physical content?


Find the dimensions of pressure.


Find the dimensions of the specific heat capacity c.
(a) the specific heat capacity c,
(b) the coefficient of linear expansion α and
(c) the gas constant R.
Some of the equations involving these quantities are \[Q = mc\left( T_2 - T_1 \right), l_t = l_0 \left[ 1 + \alpha\left( T_2 - T_1 \right) \right]\] and PV = nRT.


Find the dimensions of the coefficient of linear expansion α and


The height of mercury column in a barometer in a Calcutta laboratory was recorded to be 75 cm. Calculate this pressure in SI and CGS units using the following data : Specific gravity of mercury = \[13 \cdot 6\] , Density of \[\text{ water} = {10}^3 kg/ m^3 , g = 9 \cdot 8 m/ s^2\] at Calcutta. Pressure
= hpg in usual symbols.


Test if the following equation is dimensionally correct:
\[v = \sqrt{\frac{P}{\rho}},\]

where v = velocity, ρ = density, P = pressure


Test if the following equation is dimensionally correct:
\[v = \frac{1}{2 \pi}\sqrt{\frac{mgl}{I}};\] 
where h = height, S = surface tension, \[\rho\] = density, P = pressure, V = volume, \[\eta =\] coefficient of viscosity, v = frequency and I = moment of interia.


Let x and a stand for distance. Is
\[\int\frac{dx}{\sqrt{a^2 - x^2}} = \frac{1}{a} \sin^{- 1} \frac{a}{x}\] dimensionally correct?


Can you add three unit vectors to get a unit vector? Does your answer change if two unit vectors are along the coordinate axes?


Can you add two vectors representing physical quantities having different dimensions? Can you multiply two vectors representing physical quantities having different dimensions?


A vector \[\vec{A}\] points vertically upward and \[\vec{B}\] points towards the north. The vector product \[\vec{A} \times \vec{B}\] is


The radius of a circle is stated as 2.12 cm. Its area should be written as


Let \[\vec{C} = \vec{A} + \vec{B}\]


If \[\vec{A} , \vec{B} , \vec{C}\] are mutually perpendicular, show that  \[\vec{C} \times \left( \vec{A} \times \vec{B} \right) = 0\] Is the converse true?


Give an example for which \[\vec{A} \cdot \vec{B} = \vec{C} \cdot \vec{B} \text{ but } \vec{A} \neq \vec{C}\].


Draw a graph from the following data. Draw tangents at x = 2, 4, 6 and 8. Find the slopes of these tangents. Verify that the curve draw is y = 2x2 and the slope of tangent is \[\tan \theta = \frac{dy}{dx} = 4x\] 
\[\begin{array}x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ y & 2 & 8 & 18 & 32 & 50 & 72 & 98 & 128 & 162 & 200\end{array}\]


Round the following numbers to 2 significant digits.
(a) 3472, (b) 84.16. (c)2.55 and (d) 28.5


In a submarine equipped with sonar, the time delay between the generation of a pulse and its echo after reflection from an enemy submarine is observed to be 80 s. If the speed of sound in water is 1460 ms-1. What is the distance of an enemy submarine? 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×