Advertisements
Advertisements
Question
Find the area of the circle x2 + y2 = 62
Solution
By the symmetry of the circle, required area of the circle is 4 times the area of the region OPQO.
For the region OPQO,
The limits of integration are x = 0 and x = 6.
Given equation of the circle is x2 + y2 = 62
∴ y2 = 62 – x2
∴ y = `+- sqrt(6^2 - x^2)`
∴ y = `sqrt(6^2 - x^2)` ......[∵ In first quadrant, y > 0]
∴ Required area = 4 (area of the region OPQO)
= `4 xx int_0^6 y*"d"x`
= `4 xx int_0^6 sqrt(6^2 - x^2) "d"x`
= `4[x/2 sqrt((6)^2 - x^2) + (6)^2/2 sin^-1 (x/6)]_0^6`
= `4{[6/2 sqrt((6)^2 - (6)^2) + (6)^2/2 sin^-1 (6/6)] - [0/2 sqrt((6)^2 - (0)^2) + (6)^2/2 sin^-1 (0/6)]}`
= `4{[0 + 36/2 sin^-1 (1)] - [0 + 0]}`
= `4(36/2 xx pi/2)`
= 36π sq.units
APPEARS IN
RELATED QUESTIONS
Find the area under the given curve and given line:
y = x2, x = 1, x = 2 and x-axis
Find the area under the given curve and given line:
y = x4, x = 1, x = 5 and x-axis
Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).
Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}
Choose the correct alternative :
Area of the region bounded by the curve x2 = y, the X-axis and the lines x = 1 and x = 3 is _______.
The area of the region bounded by y2 = 4x, the X-axis and the lines x = 1 and x = 4 is _______.
Area of the region bounded by x2 = 16y, y = 1 and y = 4 and the Y-axis, lying in the first quadrant is _______.
Fill in the blank :
Area of the region bounded by y = x4, x = 1, x = 5 and the X-axis is _______.
Choose the correct alternative:
Area of the region bounded by the curve y = x3, x = 1, x = 4 and the X-axis is ______
Choose the correct alternative:
Area of the region bounded by the curve x2 = 8y, the positive Y-axis lying in the first quadrant and the lines y = 4 and y = 9 is ______
The area of the region x2 = 4y, y = 1 and y = 2 and the Y axis lying in the first quadrant is ______
The area of the region bounded by y2 = 25x, x = 1 and x = 2 the X axis is ______
Find area of the region bounded by 2x + 4y = 10, y = 2 and y = 4 and the Y-axis lying in the first quadrant
The area bounded by y = `27/x^3`, X-axis and the ordinates x = 1, x = 3 is ______
Area under the curve `y=sqrt(4x+1)` between x = 0 and x = 2 is ______.
Area of the region bounded by y= x4, x = 1, x = 5 and the X-axis is ______.
Area bounded by y = sec2x, x = `π/6`, x = `π/3` and x-axis is ______.
The area (in sq. units) of the region {(x, y) : y2 ≥ 2x and x2 + y2 ≤ 4x, x ≥ 0, y ≥ 0} is ______.