English

From a Lighthouse, the Angles of Depression of Two Ships on Opposite Sides of the Lighthouse Were Observed to Be 30° and 45°. If the Height of the Lighthouse is 90 Metres and - Mathematics

Advertisements
Advertisements

Question

From a lighthouse, the angles of depression of two ships on opposite sides of the lighthouse were observed to be 30° and 45°. If the height of the lighthouse is 90 metres and the line joining the two ships passes through the foot of the lighthouse, find the distance between the two ships, correct to two decimal places.

Sum

Solution


Let AB is the lighthouse, C and D are the position of two ships.

From right-angled ΔABC,

tan 30° = `"AC"/"BC"`

⇒ `1/sqrt3 = (90 m)/"BC"`

⇒ BC = [ 90 x √3 ] m

∴ BC = 155.88 m

Again, from right angled ΔACD,

tan 45° = `"AC"/"CD"`

⇒ 1 = `(90 m)/"CD"`

⇒ CD = 90 m
Hence, the distance between the two ships
= BC + Cd 
= 155.88 + 90 m
= 245.88 m

shaalaa.com
Heights and Distances - Solving 2-D Problems Involving Angles of Elevation and Depression Using Trigonometric Tables
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 4

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 4 | Q 2

RELATED QUESTIONS

From the top of a lighthouse, 100 m high the angles of depression of two ships on opposite sides of it are 48° and 36° respectively. Find the distance between the two ships to the nearest metre.


Two climbers are at points A and B on a vertical cliff face. To an observer C, 40 m from the foot of the cliff, on the level ground, A is at an elevation of 48° and B of 57°. What is the distance between the climbers?


A person standing on the bank of a river observes that the angle of elevation of the top of a tree standing on the opposite bank is 60°. When he moves 40 m away from the bank, he finds the angle of elevation to be 30°. Find:

  1. the height of the tree, correct to 2 decimal places,
  2. the width of the river.

The length of the shadow of a tower standing on level plane is found to be 2y metres longer when the sun’s altitude is 30° than when it was 45°. Prove that the height of the tower is `y(sqrt(3) + 1)` metres.


The angle of elevation of a tower from a point in line with its base is `45^circ` . On moving 20m towards the tower , the angle of elevation changes to `60^circ` . Find the height of the tower.


An aeroplane when flying at a height of 4km from the ground passes vertically above another aeroplane at an instant when the angles of the elevation of the two planes from the same point on the ground are 60° and 45° respectively. Find the vertical distance between the aeroplanes at that instant. 


A man in a boat rowing away from a lighthouse 180 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° and 30°. Find the speed of the boat. 


From an aeroplane vertically above a straight horizontal road, the angles of depression of two consecutive milestone on opposite sides of the aeroplane are observed to be α, and β. Show that the height in miles of aeroplane above the road is `(tanα  tanβ)/(tanα + tanβ)`.


The angles of elevation of the top of a tower from two points A and B at a distance of a and b respectively from the base and in the same straight line with it are complementary. Prove that the height of the tower is `sqrt(ab)`.


If the angle of elevation of a cloud from a point h meters above a lake is a*and the angle of depression of its reflection in the lake is |i. Prove that the height of the cloud is `(h (tan β + tan α))/(tan β - tan α)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×