Advertisements
Advertisements
Question
From the following cumulative frequency table, draw ogive and then use it to find:
- Median
- Lower quartile
- Upper quartile
Marks (less than) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Cumulative frequency | 5 | 24 | 37 | 40 | 42 | 48 | 70 | 77 | 79 | 80 |
Solution
Marks (less than) | Cumulative frequency |
10 | 5 |
20 | 24 |
30 | 37 |
40 | 40 |
50 | 42 |
60 | 48 |
70 | 70 |
80 | 77 |
90 | 79 |
100 | 80 |
Number of terms = 80
Median = 40th term
i. Median = Through 40th term mark draw a line parallel to the x-axis which meets the curve at A. From A, draw a perpendicular to x-axis which meets it at B.
Value of B is the median = 40
ii. Lower quartile (Q1) = 20th term = 18
iii. Upper quartile (Q3) = 60th term = 66
APPEARS IN
RELATED QUESTIONS
Find the mode and the median of the following frequency distribution:
x | 10 | 11 | 12 | 13 | 14 | 15 |
f | 1 | 4 | 7 | 5 | 9 | 3 |
The contents of 100 match boxes were checked to determine the number of matches they contained.
No. of matches | 35 | 36 | 37 | 38 | 39 | 40 | 41 |
No. of boxes | 6 | 10 | 18 | 25 | 21 | 12 | 8 |
- Calculate, correct to one decimal place, the mean number of matches per box.
- Determine, how many extra matches would have to be added to the total contents of the 100 boxes to bring the mean up to exactly 39 matches.
Draw a histogram and hence estimate the mode for the following frequency distribution:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Freq | 2 | 8 | 10 | 5 | 4 | 3 |
Estimate the median, the lower quartile and the upper quartile of the following frequency distribution by drawing an ogive:
Marks | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
No. of boys | 10 | 12 | 14 | 12 | 9 | 7 | 6 |
The median of observations 10, 11, 13, 17, x + 5, 20, 22, 24 and 53 (arranged in ascending order) is 18; find the value of x.
The mean of a certain number of observations is 32. Find the resulting mean, if the observation is decreased by 20%.
Find the mean of: first eight natural numbers
Find the median of the following sets of numbers.
25, 11, 15, 10, 17, 6, 5, 12.
The mean of five positive integers is twice their median. If four of the integers are 3, 4, 6, 9 and median is 6, then find the fifth integer
The median of the data 24, 29, 34, 38, 35 and 30, is ___________