English

गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए: सभी प्राकृत संख्या n के लिए, 2 + 4 + 6 + ... + 2n = n2 + n. - Mathematics (गणित)

Advertisements
Advertisements

Question

गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, 2 + 4 + 6 + ... + 2n = n2 + n.

Theorem

Solution

देखिए, प्रत्येक प्राकृतिक संख्या के लिए P(n) : 2 + 4 + 6 + ... + 2n = n2 + n,

अब, P(1) : 2 = 12 + 1 = 2 सही है।

इसलिये, P(1) सत्य है।

आइए हम मान लें कि कुछ प्राकृतिक संख्या n = k के लिए P(n) यह सही है।

∴ P(k) : 2 + 4 + 6 + ..... + 2k = k2 + k

साबित करो, Pk + 1 सही है।

​P(k + 1) : 2 + 4 + 6 + 8 + ..... + 2k + 2(k + 1)

= k2 + k + 2(k + 1)

= k2 + k + 2k + 2

= k2 + 2k + 1 + k + 1

= (k + 1)2 + k + 1​

इसलिए, जहाँ P(k) भी P(k + 1) सत्य है।

इसलिए, गणितीय प्रेरण के सिद्धांत से सभी प्राकृतिक संख्याओं n के लिए P(n) सही है।

shaalaa.com
गणितीय आगमन का सिद्धांत
  Is there an error in this question or solution?
Chapter 4: गणितीय आगमन का सिद्धांत - प्रश्नावली [Page 71]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 4 गणितीय आगमन का सिद्धांत
प्रश्नावली | Q 14. | Page 71

RELATED QUESTIONS

सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:

`1^3 +  2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`(1+3/1)(1+ 5/4)(1+7/9)...(1 + ((2n + 1))/n^2) = (n + 1)^2`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1^2 + 3^2 + 5^2 + ... + (2n -1)^2 = (n(2n - 1) (2n + 1))/3`


n(n + 1)(n + 5), संख्या 3 का एक गुणज है।


102n-1 + 1, संख्या 11 से भाज्य है।


x2n – y2n, (x + y) से भाज्य है।


41n – 14n, संख्या 27 का एक गुणज है।


(2n + 7) < (n+ 3)2


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

सभी प्राकृत संख्याओं n ≥ 2 के लिए सिद्ध कीजिए कि `sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

सभी प्राकृत संख्याओं n ≥ 2 के लिए, `(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

22n - 1 संख्या 3 से भाज्य है।


आगमन विधि द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्याओं n के लिए, sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β)

= `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


गणितीय आगमन के सिद्धान्त द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए, 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1


बताइए कि गणितीय आगमन द्वारा कथन P(n) : 12 + 22 + ... + n2 = `(n(n + 1)(2n + 1))/6` की निम्नलिखित उपपत्ति सत्य है या असत्य है।

उपपत्ति गणितीय आगमन के सिद्धांत द्वारा n = 1 के लिए P(n) सत्य है, क्योंकि

`1^2 = 1 = (1(1 + 1)(2.1 + 1))/6` पुन: किसी k ≥ 1 के लिए k2 = `(k(k + 1)(2k + 1))/6`

अब हम सिद्ध करेंगे कि `(k + 1)^2 = ((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए 32n − 1 संख्या 8 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, 2n < (n + 2)!


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, 1 + 2 + 22 + ... + 2n = 2n + 1 − 1.


सभी प्राकृत संख्या k ≥ 2 के लिए, एक अनुक्रम a1, a2, a3 ...., a1 = 3 तथा ak = 7ak − 1 द्वारा परिभाषित है। सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए an = 3.7n−1.


सभी प्राकृत संख्या k ≥ 2 के लिए अनुक्रम d1, d2, d3 ..., d1 = 2 तथा `d_k = (d_{k - 1})/k` द्वारा परिभाषित है। सिद्ध कीजिए कि सभी n ∈ N के लिए, `d_n = 2/(n!)`.


सभी n ∈ N के लिए, सिद्ध कीजिए कि, `sintheta + sin2theta + sin3theta + ... + sinntheta = ((sin  ntheta)/2 sin(n + 1)/2theta)/(sin  theta/2)`


सभी n ∈ N के लिए, सिद्ध कीजिए कि n भिन्न-भिन्न distinct अवयव वाले (अंतर्विष्ट किए हुए) समुच्चय के उपसमुच्चयों की संख्या 2n है।


यदि सभी n ∈ N के लिए, 10n + 3.4n + 2 + k, संख्या 9 से भाज्य है, तो k का लघुतम पूर्णांक मान ______।


यदि xn − 1.x − k, से भाज्य है, तो k का न्यूनतम पूर्णांक है:


यदि P(n) : 2n < n!, n ∈ N, तो P(n) सभी n ≥ ______ के लिए सत्य है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×