Advertisements
Advertisements
Question
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
`(1+3/1)(1+ 5/4)(1+7/9)...(1 + ((2n + 1))/n^2) = (n + 1)^2`
Solution
माना
P(n) : `(1+3/1)(1+ 5/4)(1+7/9)...(1 + ((2n + 1))/n^2) = (n + 1)^2`
n = 1 के लिए बायाँ पक्ष = `1 + 3/1 = 1 + 3 = 4`
दायाँ पक्ष = `(n +1)^2`
= `(1+ 1)^2 = 2^2 = 4`
⇒ P(n), n = 1 के लिए सत्य है।
मान लीजिए P(n), n = k के लिए सत्य है।
∴ `(1+3/1)(1+ 5/4)(1+7/9)...(1 + ((2k + 1))/k^2) = (k + 1)^2`
(k + 1) वॉ पद = `[1+ (2k +3)/(k +1)^2]` से दोनों पक्षों में गुणा पर,
`(1+3/1)(1+ 5/4)(1+7/9)...(1 + ((2k + 1))/k^2) = [1+(2k +3)/(k +1)^2]`
= `(k + 1)^2 [1 + (2k +3)/(k+1)^2]`
= `(k + 1)^2 [((k+1)^2 + 2k +3)/(k+1)^2]`
= `(k^2 + 2k + 1 + 2k + 3)`
= `k^2 + 4k + 4 = (k + 2)^2 = (k + 1 + 1)^2`
⇒ P(n), n = k + 1 के लिए सत्य है।
अतः गणितीय आगमन सिद्धांत के अनुसार P(n), n ϵ N, n के सभी मानों के लिए सत्य है।
APPEARS IN
RELATED QUESTIONS
सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:
`1 + 3 + 3^2 + ... + 3^(n – 1) =((3^n -1))/2`
सभी n ∈ N के लिए गणितीय प्रेरण के सिद्धांत का उपयोग करके निम्नलिखित को सिद्ध करें:
`1^3 + 2^3 + 3^3 + ... + n^3 = ((n(n+1))/2)^2`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:
1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`
सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: `1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`
102n-1 + 1, संख्या 11 से भाज्य है।
x2n – y2n, (x + y) से भाज्य है।
32n+2 – 8n- 9, संख्या 8 से भाज्य है।
41n – 14n, संख्या 27 का एक गुणज है।
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
22n - 1 संख्या 3 से भाज्य है।
गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):
सभी प्राकृत संख्याओं n ≥ 3 के लिए 2n + 1 < 2n.
गणितीय आगमन के सिद्धान्त द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए, 1 × 1! + 2 × 2! + 3 × 3! + ... + n × n! = (n + 1)! – 1
गणितीय आगमन के सिद्धांत द्वारा सिद्ध कीजिए कि श्रेणी (series), 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... के n पदों का योगफल Sn, निम्नलिखित प्रकार है, Sn = `{{:((n(n + 1)^2)/2",", "यदि n सम है"),((n^2(n + 1))/2",", "यदि n विषम है"):}`
बताइए कि गणितीय आगमन द्वारा कथन P(n) : 12 + 22 + ... + n2 = `(n(n + 1)(2n + 1))/6` की निम्नलिखित उपपत्ति सत्य है या असत्य है।
उपपत्ति गणितीय आगमन के सिद्धांत द्वारा n = 1 के लिए P(n) सत्य है, क्योंकि
`1^2 = 1 = (1(1 + 1)(2.1 + 1))/6` पुन: किसी k ≥ 1 के लिए k2 = `(k(k + 1)(2k + 1))/6`
अब हम सिद्ध करेंगे कि `(k + 1)^2 = ((k + 1)((k + 1) + 1)(2(k + 1) + 1))/6`
किसी ऐसे कथन P(n) का उदाहरण दीजिए जो n के सभी मानों के लिए सत्य है। अपने उत्तर का औचित्य बताइए।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए 32n − 1 संख्या 8 से भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
प्रत्येक प्राकृत संख्या n के लिए, n(n2 + 5), संख्या 6 से भाज्य है।
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n ≥ 5 के लिए, n2 < 2n.
गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:
सभी प्राकृत संख्या n के लिए, 1 + 2 + 22 + ... + 2n = 2n + 1 − 1.
सभी n ∈ N के लिए, सिद्ध कीजिए कि, cosθ cos2θ cos22θ ... cos2n−1θ = `(sin2^nθ)/(2^nsinθ)`.
सभी n ∈ N के लिए, सिद्ध कीजिए कि n भिन्न-भिन्न distinct अवयव वाले (अंतर्विष्ट किए हुए) समुच्चय के उपसमुच्चयों की संख्या 2n है।
यदि सभी n ∈ N के लिए, 10n + 3.4n + 2 + k, संख्या 9 से भाज्य है, तो k का लघुतम पूर्णांक मान ______।
सभी n ∈ N के लिए, `3.5^{2n + 1} + 2^{3n + 1}`, निम्नलिखित में से किस संख्या से भाज्य है:
यदि P(n) : 2n < n!, n ∈ N, तो P(n) सभी n ≥ ______ के लिए सत्य है।