English

सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: 12.5+15.8+18.11+...+1(3n-1)(3n+2)=n6n+4 - Mathematics (गणित)

Advertisements
Advertisements

Question

सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: `1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

Sum

Solution

माना P(n) :  `1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3n - 1)(3n + 2)) = n/(6n + 4)`

यदि n = 1 

बायाँ पक्ष = `1/2.5 = 1/10`

दायाँ पक्ष  = `"n"/(6"n" + 4) = 1/(6 +4) = 1/10`

⇒ P(n), n = 1 के लिए सत्य है।
मान लीजिए P(n), n = k के लिए सत्य है।

∴ `1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3k - 1)(3k + 2)) = k/(6k + 4)`

(k + 1) वॉ पद = `k/([3(k +1) - 1][3(k +1) +2]` = `k/((3k + 2)(3k + 5))` दोनों पक्षों में जोड़ने पर,

`1/2.5 + 1/5.8 + 1/8.11 + ... + 1/((3k - 1)(3k + 2)) = 1/((3k + 2)(3k +5))`

= `k/(6k + 4) + 1/((3k + 2)(3k +5))`

= `(k(3k + 5)+2)/(2(3k + 2)(3k + 5)`

= `(3k^2 + 5k + 2)/(2(3k + 2)(3k + 5)`

= `((3k + 2)(k +1))/(2(3k + 2)(3k + 5)`

= `(k + 1)/(6k + 10)`

= `(k + 1)/(6(k + 1) + 4`

⇒ P(n), n = k + 1 के लिए सत्य है।
अतः गणितीय आगमन सिद्धांत के अनुसार P(n), n ϵ N, n के सभी मानों के लिए सत्य है।

shaalaa.com
गणितीय आगमन का सिद्धांत
  Is there an error in this question or solution?
Chapter 4: गणितीय आगमन का सिद्धांत - प्रश्नावली 4.1 [Page 103]

APPEARS IN

NCERT Mathematics [Hindi] Class 11
Chapter 4 गणितीय आगमन का सिद्धांत
प्रश्नावली 4.1 | Q 10. | Page 103

RELATED QUESTIONS

सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1.3 + 2.3^2 + 3.3^3 + .... + n.3^n = ((2n - 1)3^(n +1) + 3)/4`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि: 

1.2 + 2.3 + 3.4+ ... + n(n+1) = `[(n(n+1)(n+2))/3]`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

1.3 + 3.5 + 5.7 + ...+(2n -1)(2n + 1) = `(n(4n^2 + 6n -1))/3`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

1.2 + 2.22 + 3.22 + ………. + n.2n = (n – 1). 2n+1 + 2


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5) + ...+ 1/(n(n+1)(n+2)) = (n(n+3))/(4(n+1) (n+2))`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`a + ar + ar^2 + ... + ar^(n -1) = (a(r^n - 1))/(r -1)`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`(1+ 1/1)(1+ 1/2)(1+ 1/3)...(1+ 1/n) = (n + 1)`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1/1.4 + 1/4.7 + 1/7.10 + ... + 1/((3n - 2)(3n + 1)) = n/((3n + 1))`


सभी n ϵ N के लिए गणितीय आगमन सिद्धांत के प्रयोग द्वारा सिद्ध कीजिए कि:

`1+2+ 3+...+n<1/8(2n +1)^2`


x2n – y2n, (x + y) से भाज्य है।


41n – 14n, संख्या 27 का एक गुणज है।


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

सभी प्राकृत संख्याओं n ≥ 2 के लिए सिद्ध कीजिए कि `sum_(t = 1)^(n - 1) t(t + 1) = (n(n - 1)(n + 1))/3`


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

सभी प्राकृत संख्याओं n ≥ 2 के लिए, `(1 - 1/2^2).(1 - 1/3^2)...(1 - 1/n^2) = (n + 1)/(2n)`


गणितीय आगमन के सिद्धांत का प्रयोग करके, दिए गए कथन को सिद्ध कीजिए (n ∈ N):

22n - 1 संख्या 3 से भाज्य है।


आगमन विधि द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्याओं n के लिए, sinα + sin(α + β) + sin(α + 2β)+ ... + sin(α + (n – 1)β)

= `(sin (alpha + (n - 1)/2 beta)sin((nbeta)/2))/(sin(beta/2))`


गणितीय आगमन के सिद्धांत द्वारा सिद्ध कीजिए कि श्रेणी (series), 12 + 2 × 22 + 32 + 2 × 42 + 52 + 2 × 62 ... के n पदों का योगफल Sn, निम्नलिखित प्रकार है, Sn = `{{:((n(n + 1)^2)/2",",  "यदि n सम है"),((n^2(n + 1))/2",",  "यदि n विषम है"):}`


एक विद्यार्थी को किसी कथन P(n) को गणितीय आगमन द्वारा सिद्ध करने के लिए कहा गया। उसने सिद्ध किया कि, सभी k > 5 ∈ N के लिए P(k + 1) सत्य है, जब कभी P(k) सत्य है और यह कि P(5) भी सत्य है। इसके आधार पर उसने निष्कर्ष निकाला कि P(n) सत्य है,


किसी ऐसे कथन P(n) का उदाहरण दीजिए जो n के सभी मानों के लिए सत्य है। अपने उत्तर का औचित्य बताइए।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

प्रत्येक प्राकृत संख्या n के लिए, 4n − 1 संख्या 3 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, 23n − 1, संख्या 7 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

किसी प्राकृत संख्या n के लिए 7n − 2n संख्या 5 से भाज्य है।


गणितीय आगमन के सिद्धांत द्वारा प्रश्न के कथन को सिद्ध कीजिए:

सभी प्राकृत संख्या n के लिए, 1 + 2 + 22 + ... + 2n = 2n + 1 − 1.


सभी प्राकृत संख्या k ≥ 2 के लिए, एक अनुक्रम a1, a2, a3 ...., a1 = 3 तथा ak = 7ak − 1 द्वारा परिभाषित है। सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए an = 3.7n−1.


सभी प्राकृत संख्या k के लिए एक अनुक्रम b0, b1, b2 ...., b0 = 5 तथा bk = 4 + bk − 1 द्वारा परिभाषित है। गणितीय आगमन के प्रयोग द्वारा सिद्ध कीजिए कि सभी प्राकृत संख्या n के लिए bn = 5 + 4n.


यदि सभी n ∈ N के लिए, 10n + 3.4n + 2 + k, संख्या 9 से भाज्य है, तो k का लघुतम पूर्णांक मान ______।


सभी n ∈ N के लिए, `3.5^{2n + 1} + 2^{3n + 1}`, निम्नलिखित में से किस संख्या से भाज्य है:


यदि xn − 1.x − k, से भाज्य है, तो k का न्यूनतम पूर्णांक है:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×