English
Karnataka Board PUCPUC Science Class 11

He Current Generator Ig' Shown in Figure, Sends a Constant Current I Through the Circuit. the Wire Ab Has a Length L And Mass M And Can Slide on the Smooth, Horizontal Rails Connected To Ig. - Physics

Advertisements
Advertisements

Question

The current generator Ig' shown in figure, sends a constant current i through the circuit. The wire ab has a length l and mass m and can slide on the smooth, horizontal rails connected to Ig. The entire system lies in a vertical magnetic field B. The system is kept vertically in a uniform horizontal magnetic field B that is perpendicular to the plane of the rails (figure). It is found that the wire stays in equilibrium. If the wire ab is replaced by another wire of double its mass, how long will it take in falling through a distance equal to its length?

Sum

Solution

Let us consider the above free body diagram.

As the net force on the wire is zero, ilB = mg.

When the wire is replaced by a wire of double mass, we have

Now, let a' be the acceleration of the wire in downward direction and t be the time taken by the wire to fall.

Net force on the wire = 2mg − ilB = Fnet

On applying Newton's second law, we get

2mg − ilB = 2 ma'    ...........(1)

\[\Rightarrow a' = \frac{2mg - ilB}{2 m}\]

\[s = ut + \frac{1}{2}a' t^2 \]

\[ \Rightarrow l = \frac{1}{2} \times \frac{2mg - ilB}{2m} \times t^2 .............\left[ \because s = l\right]\]

\[ \Rightarrow t = \sqrt{\frac{4 ml}{2mg - ilB}}\]

\[ \Rightarrow t = \sqrt{\frac{4 ml}{2mg - mg}} .........\text{[From (1)]}\]

` t = 2sqrt(l/g)`

shaalaa.com
Motion in a Magnetic Field
  Is there an error in this question or solution?
Chapter 16: Electromagnetic Induction - Exercises [Page 309]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 16 Electromagnetic Induction
Exercises | Q 47 | Page 309

RELATED QUESTIONS

Depict the behaviour of magnetic field lines in the presence of a diamagnetic material?


Two identical coils P and Q each of radius R are lying in perpendicular planes such that they have a common centre. Find the magnitude and direction of the magnetic field at the common centre of the two coils, if they carry currents equal to I and \[\sqrt{3}\] I respectively.


 If an electric field \[\vec{E}\] is also applied such that the particle continues moving along the original straight line path, what should be the magnitude and direction of the electric field \[\vec{E}\] ?


The motion of copper plate is damped when it is allowed to oscillate between the two poles of a magnet. What is the cause of this damping?


Two identical circular wires P and Q each of radius R and carrying current ‘I’ are kept in perpendicular planes such that they have a common centre as shown in the figure. Find the magnitude and direction of the net magnetic field at the common centre of the two coils.


Two long straight parallel conductors carrying steady currents I1 and I2 are separated by a distance 'd'. Explain briefly, with the help of a suitable diagram, how the magnetic field due to one conductor acts on the other. Hence deduce the expression for the force acting between the two conductors. Mention the nature of this force.


A wire ab of length l, mass m and resistance R slides on a smooth, thick pair of metallic rails joined at the bottom as shown in figure. The plane of the rails makes an angle θ with the horizontal. A vertical magnetic field B exists in the region. If the wire slides on the rails at a constant speed v, show that \[B = \sqrt{\frac{mg R sin\theta}{v l^2 \cos^2 \theta}}\]


A charged particle moves through a magnetic field perpendicular to its direction. Then ______.


Consider the following statements and select the incorrect statement(s).
  1. The presence of a large magnetic flux through a coil maintains a current in the coil if the circuit is continuous.
  2. A coil of a metal wire kept stationary in a non– uniform magnetic field has an e.m.f induced in it.
  3. A charged particle enters a region of uniform magnetic field at an angle of 85° to the magnetic lines of force, the path of the particle is a circle.
  4. There is no change in the energy of a charged particle moving in a magnetic field although a magnetic force is acting on it.

If an electron is moving with velocity `vecnu` produces a magnetic field `vec"B"`, then ______.


Assertion(A): A proton and an electron, with same momenta, enter in a magnetic field in a direction at right angles to the lines of the force. The radius of the paths followed by them will be same.

Reason (R): Electron has less mass than the proton.

Select the most appropriate answer from the options given below:


A charged particle moving in a magnetic field experiences a resultant force ______


A beam of protons with speed 4 × 105 ms-1 enters a uniform magnetic field of 0.3 T at an angle of 60° to the magnetic field. The pitch of the resulting helical path of protons is close to :

(Mass of the proton = 1.67 × 10-27 kg, charge of the proton = 1.69 × 10-19 C)


A square coil ABCD with its plane vertical is released from rest in a horizontal uniform magnetic field `vec"B"` of length 2L. The acceleration of the coil is ______.


An α particle is moving along a circle of radius R with a constant angular velocity ω. Point A lies in the same plane at a distance 2R from the centre. Point A records magnetic field produced by α particle, if the minimum time interval between two successive times at which A records zero magnetic field is 't' the angular speed ω, in terms of t is ______.


A charged particle is accelerated through a potential difference of 12 kV and acquires a speed of 106 ms-1. It is projected perpendicularly into the magnetic field of strength 0.2 T. The radius of the circle described is ______ cm.


A charged particle of charge q and mass m is projected in a region that contains an electric and magnetic field as shown in the figure with velocity V at an angle of 45° with x-direction. If V = `sqrt((qE)/m)`, then net deviation in particle motion will be (neglect the effect of gravity) in a clockwise direction approx ______ °.

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×