Advertisements
Advertisements
Question
Height and base of a right angled triangle are 24 cm and 18 cm find the length of its hypotenuse
Options
24 cm
30 cm
15 cm
18 cm
Solution
30 cm
Explanation:
According to Pythagoras theorem,
(Hypotenuse)2 = (Base)2 + (Height)2
= (18)2 + (24)2
= 324 + 576
= 900
∴ Hypotenuse = 30
APPEARS IN
RELATED QUESTIONS
Adjacent sides of a parallelogram are 11 cm and 17 cm. If the length of one of its diagonal is 26 cm, find the length of the other.
In ∆ABC, point M is the midpoint of side BC. If, AB2 + AC2 = 290 cm2, AM = 8 cm, find BC.
Out of the following, which is the Pythagorean triplet?
Some question and their alternative answer are given. Select the correct alternative.
Find perimeter of a square if its diagonal is \[10\sqrt{2}\]
Some question and their alternative answer are given. Select the correct alternative.
Altitude on the hypotenuse of a right angled triangle divides it in two parts of lengths 4 cm and 9 cm. Find the length of the altitude.
Some question and their alternative answer are given. Select the correct alternative.
In ∆ABC, AB = \[6\sqrt{3}\] cm, AC = 12 cm, BC = 6 cm. Find measure of ∠A.
Find the length a diagonal of a rectangle having sides 11 cm and 60 cm.
A side of an isosceles right angled triangle is x. Find its hypotenuse.
In ∆RST, ∠S = 90°, ∠T = 30°, RT = 12 cm then find RS and ST.
Sum of the squares of adjacent sides of a parallelogram is 130 sq.cm and length of one of its diagonals is 14 cm. Find the length of the other diagonal.
Seg PM is a median of ∆PQR. If PQ = 40, PR = 42 and PM = 29, find QR.
Seg AM is a median of ∆ABC. If AB = 22, AC = 34, BC = 24, find AM
In ΔPQR, seg PM is a median, PM = 9 and PQ2 + PR2 = 290. Find the length of QR.
Choose the correct alternative:
Out of given triplets, which is not a Pythagoras triplet?
Choose the correct alternative:
Out of all numbers from given dates, which is a Pythagoras triplet?
"The diagonals bisect each other at right angles." In which of the following quadrilaterals is the given property observed?
Which of the following figure is formed by joining the mid-points of the adjacent sides of a square?