English

In the Below Fig. Abcd and Aefd Are Two Parallelograms. Prove that (1) Pe = Fq (2) Ar (δ Ape) : Ar (δPfa) = Ar δ(Qfd) : Ar (δ Pfd) (3) Ar (δPea) = Ar (δQfd) - Mathematics

Advertisements
Advertisements

Question

In the below fig. ABCD and AEFD are two parallelograms. Prove that
(1) PE = FQ
(2) ar (Δ APE) : ar (ΔPFA) = ar Δ(QFD) : ar (Δ PFD)
(3) ar (ΔPEA) = ar (ΔQFD)

Solution

Given that, ABCD and AEFD are two parallelograms
To prove:   (1) PE = FQ

(2) `"ar (ΔAPE)"/ "ar (ΔPFA)"` = `"ar (ΔQFD)"/"ar (ΔPED)"`

(3) ar (ΔPEA) = ar (ΔQFD)

Proof:  (1) In  ΔEPA and ΔFQD

∠PEA  = ∠QFD                 [ ∴ Corresponding angles]
∠EPA  = ∠FQD                 [Corresponding angles]

 PA = QD                    [opp .sides of 11gm]

Then,  ΔEPA  ≅  ΔFQD      [By. AAS condition]

∴ EP = FQ                       [c. p. c.t]

(2)  Since, ΔPEA and ΔQFD stand on the same base PEand FQlie between the same
parallels EQ and AD

∴  ar  (ΔPEA ) = ar (ΔQFD)  →  (1) 

AD  ∴ ar (ΔPFA) = ar (PFD)        .....(2)

Divide the equation (1) by equation (2)

`"area of (ΔPEA)"/"area of (ΔPFA)"` = `"ar Δ(QFD)"/"ar Δ(PFD)"`

 (3) From (1) part ΔEPA  ≅ FQD

Then, ar (ΔEDA) = ar (ΔFQD)

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Areas of Parallelograms and Triangles - Exercise 14.3 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 14 Areas of Parallelograms and Triangles
Exercise 14.3 | Q 26 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In the given figure, ABCD is parallelogram, AE ⊥ DC and CF ⊥ AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD.


If E, F, G and H are respectively the mid-points of the sides of a parallelogram ABCD show that ar (EFGH) = 1/2ar (ABCD)

 


In the given figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that

(i) ar (PQRS) = ar (ABRS)

(ii) ar (AXS) = 1/2ar (PQRS)


A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the field is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?


In the following figure, ABCD, DCFE and ABFE are parallelograms. Show that ar (ADE) = ar (BCF).


In the given below fig. ABCD, ABFE and CDEF are parallelograms. Prove that ar (ΔADE)
= ar (ΔBCF)


ABCD is a trapezium with parallel sides AB = a cm and DC = b cm (Figure). E and F are the mid-points of the non-parallel sides. The ratio of ar (ABFE) and ar (EFCD) is ______.


ABCD is a parallelogram in which BC is produced to E such that CE = BC (Figure). AE intersects CD at F. If ar (DFB) = 3 cm2, find the area of the parallelogram ABCD.


If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram so formed will be half of the area of the given quadrilateral (Figure).

[Hint: Join BD and draw perpendicular from A on BD.]


In the following figure, ABCD and AEFD are two parallelograms. Prove that ar (PEA) = ar (QFD). [Hint: Join PD].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×