English

ABCD is a trapezium with parallel sides AB = a cm and DC = b cm (Figure). E and F are the mid-points of the non-parallel sides. The ratio of ar (ABFE) and ar (EFCD) is ______. - Mathematics

Advertisements
Advertisements

Question

ABCD is a trapezium with parallel sides AB = a cm and DC = b cm (Figure). E and F are the mid-points of the non-parallel sides. The ratio of ar (ABFE) and ar (EFCD) is ______.

Options

  • a : b

  • (3a + b) : (a + 3b)

  • (a + 3b) : (3a + b)

  • (2a + b) : (3a + b)

MCQ
Fill in the Blanks

Solution

ABCD is a trapezium with parallel sides AB = a cm and DC = b cm (Figure). E and F are the mid-points of the non-parallel sides. The ratio of ar (ABFE) and ar (EFCD) is (3a + b) : (a + 3b).
Explanation:

Given, AB = a cm, DC = b cm and AB || DC.

Also, E and F are mid-points of AD and BC, respectively.

So, distance between CD, EF and AB, EF will be same say h.

Join BD which intersect EF at M.

Now, in ΔABD, E is the mid-point of AD and EM || AB

So, M is the mid-point of BD

And EM = `1/2`AB   [By mid-point theorem]  ...(i)

Similarly in ΔCBD, MF = `1/2`CD  ...(ii)

On adding equations (i) and (ii), we get

EM + MF = `1/2` AB + `1/2` CD

⇒ EF = `1/2`(AB + CD) = `1/2`(a + b)

Now, area of trapezium ABFE

 = `1/2`(sum of parallel sides) × (distance between parallel sides)

= `1/2(a + 1/2(a + b)) xx h`

= `1/4(3a + b)h`

Now, area of trapezium EFCD

= `1/2[b + 1/2(a + b)] xx h`

= `1/4(3b + a)h`

∴ Required ratio = `"Area of ABFE"/"Area of EFCD"`

= `(1/4(3a + b)h)/(1/4(3b + a)h)`

= `((3a + b))/((a + 3b))` or (3a + b) : (a + 3b)

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Areas of Parallelograms & Triangles - Exercise 9.1 [Page 87]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 9 Areas of Parallelograms & Triangles
Exercise 9.1 | Q 10. | Page 87

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In the given figure, ABCD is parallelogram, AE ⊥ DC and CF ⊥ AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD.


P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar (APB) = ar (BQC).


In the given figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that

(i) ar (PQRS) = ar (ABRS)

(ii) ar (AXS) = 1/2ar (PQRS)


In the given figure, P is a point in the interior of a parallelogram ABCD. Show that

(i) ar (APB) + ar (PCD) = 1/2ar (ABCD)

(ii) ar (APD) + ar (PBC) = ar (APB) + ar (PCD)

[Hint: Through. P, draw a line parallel to AB]


In the following figure, ABCD, DCFE and ABFE are parallelograms. Show that ar (ADE) = ar (BCF).


In the given below fig. ABCD, ABFE and CDEF are parallelograms. Prove that ar (ΔADE)
= ar (ΔBCF)


ABCD is a parallelogram, G is the point on AB such that AG = 2 GB, E is a point of DC
such that CE = 2DE and F is the point of BC such that BF = 2FC. Prove that:

(1)  ar ( ADEG) = ar (GBCD)

 (2)  ar (ΔEGB) = `1/6` ar (ABCD)

 (3)  ar (ΔEFC) = `1/2` ar (ΔEBF)

 (4)  ar (ΔEBG)  = ar (ΔEFC)

 (5)ΔFind what portion of the area of parallelogram is the area of EFG.


In the following figure, PSDA is a parallelogram. Points Q and R are taken on PS such that PQ = QR = RS and PA || QB || RC. Prove that ar (PQE) = ar (CFD).


ABCD is a square. E and F are respectively the mid-points of BC and CD. If R is the mid-point of EF (Figure), prove that ar (AER) = ar (AFR)


The diagonals of a parallelogram ABCD intersect at a point O. Through O, a line is drawn to intersect AD at P and BC at Q. Show that PQ divides the parallelogram into two parts of equal area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×