English

P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar (APB) = ar (BQC). - Mathematics

Advertisements
Advertisements

Question

P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar (APB) = ar (BQC).

Solution

It can be observed that ΔBQC and parallelogram ABCD lie on the same base BC and these are between the same parallel lines AD and BC.

∴Area (ΔBQC) = 1/2Area (ABCD) ... (1)

Similarly, ΔAPB and parallelogram ABCD lie on the same base AB and between the same parallel lines AB and DC.

∴ Area (ΔAPB) = 1/2Area (ABCD) ... (2)

From equation (1) and (2), we obtain

Area (ΔBQC) = Area (ΔAPB)

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Areas of Parallelograms and Triangles - Exercise 9.2 [Page 159]

APPEARS IN

NCERT Mathematics [English] Class 9
Chapter 9 Areas of Parallelograms and Triangles
Exercise 9.2 | Q 3 | Page 159

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the field is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?


In the following figure, ABCD, DCFE and ABFE are parallelograms. Show that ar (ADE) = ar (BCF).


In the following figure, ABCD is parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersect DC at P, show that

ar (BPC) = ar (DPQ).

[Hint: Join AC.]


ABCD is a parallelogram, G is the point on AB such that AG = 2 GB, E is a point of DC
such that CE = 2DE and F is the point of BC such that BF = 2FC. Prove that:

(1)  ar ( ADEG) = ar (GBCD)

 (2)  ar (ΔEGB) = `1/6` ar (ABCD)

 (3)  ar (ΔEFC) = `1/2` ar (ΔEBF)

 (4)  ar (ΔEBG)  = ar (ΔEFC)

 (5)ΔFind what portion of the area of parallelogram is the area of EFG.


In the below fig. ABCD and AEFD are two parallelograms. Prove that
(1) PE = FQ
(2) ar (Δ APE) : ar (ΔPFA) = ar Δ(QFD) : ar (Δ PFD)
(3) ar (ΔPEA) = ar (ΔQFD)


PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm. A is any point on PQ. If PS = 5 cm, then ar (PAS) = 30 cm2.


ABCD is a square. E and F are respectively the mid-points of BC and CD. If R is the mid-point of EF (Figure), prove that ar (AER) = ar (AFR)


ABCD is a parallelogram in which BC is produced to E such that CE = BC (Figure). AE intersects CD at F. If ar (DFB) = 3 cm2, find the area of the parallelogram ABCD.


If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram so formed will be half of the area of the given quadrilateral (Figure).

[Hint: Join BD and draw perpendicular from A on BD.]


The diagonals of a parallelogram ABCD intersect at a point O. Through O, a line is drawn to intersect AD at P and BC at Q. Show that PQ divides the parallelogram into two parts of equal area.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×