English

In the given figure, ABCD is parallelogram, AE ⊥ DC and CF ⊥ AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD. - Mathematics

Advertisements
Advertisements

Question

In the given figure, ABCD is parallelogram, AE ⊥ DC and CF ⊥ AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD.

Solution

In parallelogram ABCD, CD = AB = 16 cm

[Opposite sides of a parallelogram are equal]

We know that

Area of a parallelogram = Base × Corresponding altitude

Area of parallelogram ABCD = CD × AE = AD × CF

16 cm × 8 cm = AD × 10 cm

`AD = (16xx8)/10cm=12.8cm`

Thus, the length of AD is 12.8 cm.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Areas of Parallelograms and Triangles - Exercise 9.2 [Page 159]

APPEARS IN

NCERT Mathematics [English] Class 9
Chapter 9 Areas of Parallelograms and Triangles
Exercise 9.2 | Q 1 | Page 159

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If E, F, G and H are respectively the mid-points of the sides of a parallelogram ABCD show that ar (EFGH) = 1/2ar (ABCD)

 


In the given figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that

(i) ar (PQRS) = ar (ABRS)

(ii) ar (AXS) = 1/2ar (PQRS)


A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the field is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?


In the below fig. ABCD and AEFD are two parallelograms. Prove that
(1) PE = FQ
(2) ar (Δ APE) : ar (ΔPFA) = ar Δ(QFD) : ar (Δ PFD)
(3) ar (ΔPEA) = ar (ΔQFD)


Two parallelograms are on equal bases and between the same parallels. The ratio of their areas is ______.


PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm. A is any point on PQ. If PS = 5 cm, then ar (PAS) = 30 cm2.


ABCD is a square. E and F are respectively the mid-points of BC and CD. If R is the mid-point of EF (Figure), prove that ar (AER) = ar (AFR)


If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram so formed will be half of the area of the given quadrilateral (Figure).

[Hint: Join BD and draw perpendicular from A on BD.]


ABCD is a trapezium in which AB || DC, DC = 30 cm and AB = 50 cm. If X and Y are, respectively the mid-points of AD and BC, prove that ar (DCYX) = `7/9` ar (XYBA)


In the following figure, ABCD and AEFD are two parallelograms. Prove that ar (PEA) = ar (QFD). [Hint: Join PD].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×