English

Two parallelograms are on equal bases and between the same parallels. The ratio of their areas is ______. - Mathematics

Advertisements
Advertisements

Question

Two parallelograms are on equal bases and between the same parallels. The ratio of their areas is ______.

Options

  • 1 : 2

  • 1 : 1

  • 2 : 1

  • 3 : 1

MCQ
Fill in the Blanks

Solution

Two parallelograms are on equal bases and between the same parallels. The ratio of their areas is 1 : 1.

Explanation:

We know that, parallelogram on the equal bases and between the same parallels are equal in area.

So, ratio of their areas is 1 : 1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Areas of Parallelograms & Triangles - Exercise 9.1 [Page 87]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 9
Chapter 9 Areas of Parallelograms & Triangles
Exercise 9.1 | Q 7. | Page 87

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

In the given figure, PQRS and ABRS are parallelograms and X is any point on side BR. Show that

(i) ar (PQRS) = ar (ABRS)

(ii) ar (AXS) = 1/2ar (PQRS)


A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the field is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?


Parallelogram ABCD and rectangle ABEF are on the same base AB and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.


In the given below fig. ABCD, ABFE and CDEF are parallelograms. Prove that ar (ΔADE)
= ar (ΔBCF)


In which of the following figures, you find two polygons on the same base and between the same parallels?


ABCD is a trapezium with parallel sides AB = a cm and DC = b cm (Figure). E and F are the mid-points of the non-parallel sides. The ratio of ar (ABFE) and ar (EFCD) is ______.


PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm. A is any point on PQ. If PS = 5 cm, then ar (PAS) = 30 cm2.


ABCD is a square. E and F are respectively the mid-points of BC and CD. If R is the mid-point of EF (Figure), prove that ar (AER) = ar (AFR)


If the mid-points of the sides of a quadrilateral are joined in order, prove that the area of the parallelogram so formed will be half of the area of the given quadrilateral (Figure).

[Hint: Join BD and draw perpendicular from A on BD.]


ABCD is a trapezium in which AB || DC, DC = 30 cm and AB = 50 cm. If X and Y are, respectively the mid-points of AD and BC, prove that ar (DCYX) = `7/9` ar (XYBA)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×